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Abstract. Joint probability analysis is most often conducted within a stationary framework. In the present study a

nonstationary bivariate approach is used to investigate the changes in the joint probabilities of extreme wave heights

and corresponding storm surges with time. The dependence structure of the studied variables is modelled using
copulas. The nonstationary Generalized Extreme Value (GEV) distribution is utilized to model the marginal
distribution functions of the variables, within a 40-year moving time window. All parameters of the GEV are tested
for statistically significant linear and polynomial trends over time. Then different copula functions are fitted to model
the dependence structure of the data. The nonstationarity of the dependence structure of the studied variables is also

investigated. The methods and techniques of the present work are implemented to wave height annual maxima and

corresponding storm surges at two selected areas of the Aegean Sea. The analysis reveals the existence of trends in
the joint exceedance probabilities of the variables, in the most likely events selected for each time interval, as well as
in a defined hazard series, such as the water level at the coastline.

1 Introduction

Extreme marine events can give rise to serious
flooding and can have severe impacts on the human
society, as well as on the environment. The general
inception of a changing climate, with extreme
meteorological events of higher frequency and intensity
increases the exposure of the human society and the
environment to severe damages. Therefore, the analysis
of extreme marine events under present and future
climate conditions is of great significance.

The study of the climate change effects on mean sea
level, storm surge and waves became a subject of
systematic research in the recent past. Although the
majority of the studies focused on mean sea level
variability and trends [1, 2] storm surges and waves and
more specifically their extreme values in a changing
climate were also considered. Significant fluctuations in
the frequency and the intensity of storms, as well as in the
wave climate [3, 4] were observed in the recent past in
the North Sea, without however identifying significant
general trends. Studies conducted in larger areas, e.g. in
the Northern Atlantic, proved certain changes in the wind
fields, in storm surge levels, as well as in the wave
climate [5, 6]. Woth et al. [7] studied the effects of
climate change on storm surge extreme values in the
North Sea, observing a statistically significant increase at
the end of the 21" century. De Winter et al. [8] examined
the effects of climate change on extreme waves in front
of the Dutch coast, identifying no significant changes
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between the return values at the end of the 21% and those
at the end of the 20™ century. Weisse et al. [9] reviewed
the knowledge about long-term changes in sea level
components and pointed out that most future projections
in the North Sea area identify a moderate increase in
storm activity with changes in storm surge and wave
climate. Evidence of climate change effects on the marine
climate has also been observed in the Mediterranean area
[10, 11, 12]. Gaertner et al. [13] detected for the first time
the danger of a tropical cyclone above the Mediterranean
accounting for future climate change, using different
high-resolution Regional Climate Models (RCMs).
Martucci et al. [14] studied wave height extremes in the
Italian Seas, identifying decadal negative trends during
the second half of the 20" century. Galiatsatou and Prinos
[15, 16] studied the effects of climate change on wave
height and storm surge extremes in selected areas of the
Aegean and the Ionian Seas, identifying a significant
increase in extreme wave and storm surge climate in the
North Aegean and Ionian Seas during the first part of the
21 century.

Recent studies on extreme value analysis for variables
associated with the marine and coastal environment have
been published by different researchers. Sanchez-Arcilla
et al. [17] studied extreme wave events at the Spanish
coast, as well as at the Dutch coast on the North Sea,
assessing return level confidence intervals using a
conventional extreme value and a Bayesian approach,
indicating how the introduction of a priori knowledge in
extreme value analysis helps to reduce uncertainty. Van
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Gelder and Mai [18] identified the main methods for
estimating the distribution functions for wave height and
storm surge extremes at the Dutch coast in the North Sea
area, implementing Extreme Value Theory (EVT).
Bulteau et al. [19] performed spatial extreme value
analysis of significant wave height along the French coast
using different extreme value techniques. Extreme value
methods have been implemented for studying the
statistical characteristics of storm surge, mainly in the
North Sea area [20, 21]. Galiatsatou and Prinos [22]
studied extreme storm surge events in selected locations
of the Dutch coast, comparing the conventional
maximum likelihood estimation procedure with
techniques implemented within the Bayesian framework.
Bardet et al. [23] presented a regional frequency analysis
of extreme storm surges along the French coast, leading
to more reliable estimates compared to at-site analysis.
Although extreme wave heights and water levels have
been studied by numerous authors, studies on the
combined impact of extreme marine variables are more
limited. Galiatsatou and Prinos [24] studied the bivariate
process of extreme wave heights and storm surges, using
different methods of selecting concurrent observations as
well as different measures of extremal dependence of the
two variables involved. Morton and Bowers [25], De
Haan and De Ronde [26], Ferreira and Guedes Soares
[27] and Repko et al. [28] described the joint probability
distribution function of long-term hydraulic conditions.
Yeh et al. [29] examined the joint probabilities of high
waves and water levels and compared results of design
water level with estimates from the traditional empirical
design approach by frequency analysis. Galiatsatou [30]
compared different pairs of bivariate observations of
extreme waves and surges with reference to joint
exceedance probabilities, in order to find the most severe
sea state caused by the two variables. Wahl et al. [31]
jointly analyzed storm surge parameters, such as highest
turning point and intensity with the significant wave
height, by means of Archimedean Copulas, resulting in
reliable exceedance probability estimates. Corbella and
Stretch [32] investigated dependencies between wave
height, wave period, storm duration, water level and
storm inter-arrival time and used trivariate copulas to
jointly analyse the variables that are significantly
associated. Masina et al. [33] produced the joint
probability distribution of extreme water levels and wave
heights at Ravenna coast in Italy and used the direct
integration method to assess the flooding probability.
Copulas were widely used in the analysis of
multivariate extreme values both in hydrology and in
marine studies (e.g. [34, 35, 36]). However, the majority
of the studies considered stationarity of the marginal
parameters and of the dependence structure of the copula.
Zhang [37] investigated the use of nonstationary marginal
distributions within a multivariate hydrological frequency
analysis based on copulas. Corbella and Stretch [32]
developed multivariate models of sea storms using
copulas, considering the influence of nonstationary
marginal distributions. Chebana et al. [38] investigated
the inclusion of a changing dependence structure between
the studied variables modeled by means of a copula
function, within a general framework of hydrologic

frequency analysis. Bender et al. [39] analysed the joint
extremes of flood peak and flood discharge in the Rhine
River, introducing a multivariate nonstationary approach
based on copulas. The latter study considered
nonstationarity both in the marginal distributions of the
variables involved, as well as in their dependence
structure.

In the present work a nonstationary multivariate
approach [39] has been implemented to wave height
annual maxima and corresponding sea level height data at
two selected areas of the Aegean Sea. In Section 2 the
GEV distribution, used to model the marginal
distributions of the variables, is introduced and described.
In Section 3, a short introduction to the copula theory is
provided, while Section 4 deals with the technique used
to select design events from the bivariate models
constructed. Section 5 describes the study areas and the
datasets available. Section 6 includes the main results of
the nonstationary analysis, while Section 7 summarizes
its main findings.

2 The GEV distribution function

The univariate Extreme Value Theory (EVT) includes
models for block maxima and models for exceedances
over appropriately defined thresholds (Peak Over
Threshold - POT models). The former correspond to the
Generalised Extreme Value (GEV) distribution function.
The GEV is a three parameter distribution, including the
location, u, the scale, o >0, and the shape, &, parameters.
Within a stationary context, the cumulative distribution
function of the GEV for &#0 is given by the following
formula [40]:

G(x):exp[-{1+§(x%._’u)}'l"f], 1+§(x27‘“)>0 (1)

The special case with {=0 corresponds to the Gumbel
distribution function. The parameters of the GEV
distribution can be assessed using different estimation
techniques. Among them, the maximum likelihood
estimation (MLE) procedure is a common and easy to
apply procedure. However, the method of L-moments
(LM) introduced by Hosking [41], has been identified in
the literature as more reliable and robust, even for
relatively small sample sizes. The L-moments are
analogous to ordinary moments and can be computed
from linear combinations of probability weighted
moments. In fact, they provide measures of the basic
aspects of the shape of distributions or data samples, such
as location, dispersion, skewness and kurtosis. For a data
sample Xi, X,, ..., X, arranged in increasing order, the
sample probability weighted moments are [21]:

b=y X, 2)
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The first three L-moments of the data sample are defined
as:

L =b, “
l, =2b =, 6))
I, = 6by — 6+, 6)

For the probability distribution of Eq. (1), the probability
weighted moments of order r are defined [21]:

B = j {G)Y dG(x) r=0, 1, 2,.. (7

The respective L-moments can be defined, as for the data
samples as:

)“1 = ﬁo (8)
b =2 =P, ©))
Ay =60, —6p, +J, (10)

Most marine variables, especially at their extreme
levels exhibit phenomena of nonstationaritty. Natural
climatic variability and climate change are some of the
prominent causes of such nonstationarities. Natural
climatic variability is mainly associated with internal
interactions between components of the climate system.
Such components are among others the El Nino Southern
Oscillation (ENSO), the Pacific Decadal Oscillation
(PDO) and the North Atlantic Oscillation (NAO), acting
on different time scales. The aforementioned oscillations
can have a significant impact on the magnitude of
extreme marine events and on the occurrence of flood
events. Climate change, with strong evidence existing
nowadays on its existence and impacts, is associated in
the literature with extreme events of higher intensity and
frequency. Therefore, climate change can also be
considered as a major cause of nonstationarity of hydro-
meteorological or marine extremes. The aforementioned
causes contribute significantly to the nonstationary
behaviour of extreme marine events and the incorporation
of such techniques in the extreme value models, for the
process of extrapolation to be more reliable and unbiased.
To incorporate nonstationarity in modelling the univariate
extreme values, the three parameters of the GEV are
assumed to vary as functions of time. Therefore the
nonstationary version of the GEV becomes [40]:

G(x)=exp[-{1+§(t>(x(;—‘(‘f)”)}-”ﬂ”], 1+§(z)%>o (1n

Therefore, within a nonstationary context, the return level
x, corresponding to a return period of 1/p, is assessed as a
function of time and it represents the quantile of the
distribution function of the studied variable in a given
year:

(1) -£(1)
= -—1-1-1 1- 1
x, (1) = p(t) f(t)[ {-log(-p)}=™1 12)

To estimate the parameters for both studied variables,
the methodology presented in [39] is implemented. A
moving time window of length #» is shifted by one year
each time and the parameters x4, o and ¢ are estimated
using the method of L-moments (Egs. (2)-(10)) for each
such time period. The parameter estimates correspond to
the last year of each studied m-years period (moving
window).

3 Modeling dependence using copulas

The main advantage of copulas over other
multivariate distributions focuses on the fact that the
dependence structure of the variables can be modeled
independently from their marginal distributions. Copulas
are multivariate distribution functions with uniform
margins over (0, 1). Considering a two dimensional
vector U on the unit cube, a copula can be defined as:

Cluy,uy) =Pr(U; <uy,U, <u,) (13)

If F is a two dimensional distribution with marginals F
and F), there exists a two dimensional copula, such that
for all x in the domain of ' [39]:

F(xlyxz):C(E(xﬂ’Fz(xz)) (14)

An one-parameter Archimedean copula is constructed
through a generator ¢ as:

Cluy,ur) = 9™ () + (1)) (15)

In the present work three one-parameter Archimedean
copulas are utilised, namely the Clayton, the Frank and
the Gumbel. The former is characterised by lower tail
dependence, the middle one with no tail dependence and
the Gumbel with strong upper tail dependence. For the
abovementioned Archimedean copulas, the copula
function C(uy, u,) can be respectively given by [39]:

Ccluvton (ul > uZ) = (ulia + u27a - l)i(lla) (16)

(e—a-u1 _1)(e—a-uz _1)

e’ -

1 A7)

1
C franic (1) = - In[1+

Cgumber (th-17) = exp{-{(=Inuy)* +(=Inu,)*1"*}  (18)

The dependence parameter a ranges in (0, o) for the
Clayton, in —In(-c0, ©)/{0} for the Frank and in [1, o) for
the Gumbel copula. In the present work, the dependence
parameter of the copulas has been assumed to vary with
time, a(?).

Apart from the one-parameter Archimedean copulas,
an Elliptical copula was also implemented in the present
work, namely the bivariate Student’s ¢ copula [42]:

C,(uy,uy) =1, , (& (uy )., (uy)) (19)

where ¢, , with a € [0, 1] and v the degrees of freedom, is
the bivariate distribution corresponding to the univariate ¢
Student distribution, #, [42]:
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The generator for the Student’s ¢ is regularly varying. The
degrees of freedom were considered fixed in the present
work (df=4). The dependence parameter of the copula can
be also considered to vary in time.

To estimate the dependence parameter of the copula
functions, Joe and Xu [43] proposed a two-stage
procedure known as Inference Functions for Margins
(IFM). The marginal parameters are first estimated:

n n P
Oy = argmax, Y- " 1og £;(X;;:0) (1)
=1 j=1

where f; is the probability density function used for the
marginals of the bivariate distribution. Then the
dependence parameter of the copula is estimated given
the marginal parameters:

djpy = argmax, Zlog c(F (X, ;éIFM )’FZ(XiZ;éIFM ka) (22)

1=l

When a consistent estimation of the dependence
parameter g, is of importance, the canonical maximum
likelihood method (CML) can be utilised, without first
specifying the marginal distributions. In this method, the
marginals are first transformed to pseudo-observations
with uniform margins (U;;, Up)" and then the dependence
parameter, a, is estimated as:

ey = ArgMax,, ZIOg cU;,Uppsa) (23)
=1

To select an appropriate copula function among the
four presented (Clayton, Frank, Gumbel and ¢ copula),
the parametric bootstrap procedure proposed by Genest et
al. [44] has been utilised. The tests computes the Cramér-
von Mises functional S,, comparing the empirical copula
of the observations with a parametric estimate of the
copula derived under the null hypothesis. Approximate p-
values for the test have been computed using the
parametric bootstrap procedure. Large values of S, result
in the rejection of the null hypothesis that the bivariate
data result from the tested copula function.

To estimate the dependence structure of the data,
within the introduced nonstationarity framework, the
moving time windows, utilized to estimate the marginal
parameters of the variables involved, have also been
applied. Pseudo-observations of the variables were first
extracted. The dependence parameters for all selected
copula functions were then extracted for each moving
window using the CML procedure (Eq. (23)). After
estimating the copula parameters, the statistic S, and its
associated p-value were estimated for all moving
windows and all candidate copula functions. The copula
with the highest p-values, that exceeded the 5%
significance level for the entire interval of the study, was
selected and applied for joint exceedance probability
estimation.

4 Selection of design events

In the framework of multivariate statistics, the joint
return period can be estimated from the joint exceedance
probability of a pair of events. In the present work, the
joint return period of the studied marine variables can be
given by [39]:

- ! _ ! (24)
O PX 20X, 2x) 1-F(x)-F(x)+Clu,u,)

TXX

The denominator of the joint return period of Eq. (24) is
the joint exceedance probability, Py

The implementation of multivariate extreme value
models results in an infinite number of combinations of
the variables involved corresponding to each joint return
period. Therefore, for a given joint exceedance
probability, an infinite number of data couples (u;, u,)
can be equally selected to be used in the design process.
To overcome the selection problem, Salvadori et al. [45]
presented the most likely design event method. This
method identifies the multivariate event with the highest
joint probability density, among events belonging to the
same probability isoline [46]:

(u, ) =argmax fyy (F (), F ' (u,) (25)
T,

X1.Xy
The resulting design values (x;, x;) can then be estimated
using the inverse of the cumulative distribution functions
of the marginals:

% =F ') and x, = F; ' (1,) (26)

Inundation of coastal areas is caused by the combined
effect of high water levels (storm surges and astronomical
tides) and wave heights. The wave-induced run-up at the
coast can be calculated using the Stockdon et al. [47]
formula:

i

1 2 2
Ry, =1.1(0.35tan ,/)’(HSL(,)2+(I-ISL"(0'563M;1 p+0.004) )y (27)
where H; is the deepwater significant wave height, L, is
the deepwater wave length associated to the wave peak
period 7, and tanf is the beachface slope. To estimate the
wave-induced run-up, in the present work the wave
period was modeled by means of a conditional GEV
distribution function (Eq. (1)) with parameters depending
on the significant wave height estimates. The parameters
w1 and o of the fitted distribution were modelled using
empirical regression functions [28]:

g(H,),=alog(H,)+b
or g(H,), :aHSh

(28)

where g(H,); correspond to the location (i=1) and scale
(i=2) parameters and a, b are parameters to be estimated.
The shape parameter, & of the GEV, which determines
the tail behaviour of the distribution, has been considered
constant.
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5 Study areas and datasets

The methods and techniques of the present work have
been implemented to wave height annual maxima and
associated sea level height values at selected locations of
the Aegean Sea. Two different areas have been selected
(Figure 1), one in the North Aegean Sea (area 1) close to
the coastal areas of Thrace and one in the South Aegean
Sea (area 2), in the marine area of Heraklion in Crete.

[Lon]
[Lat]
[24.95.26.10]
[40.30. 41.05]
[
L

Latitude

25.00. 25 60|
35.25. 35 70]

19 20 21 22 23 24 25 26 27 28
Longitude

Figure 1. Selected areas of the Aegean Sea

The marine data of the present work are predictions of
wave height and sea level height at selected grid points of
the two study areas. The wave data resulted from a wave
prediction system formulated for the Greek Seas, based
on the wave model SWAN [48]. Sea level height
simulations resulted from a high resolution two-
dimensional model of hydrodynamic ocean circulation
also formulated for the Greek seas at large [49]. The
validation and calibration of the models was performed
using historic data from insitu stations. The datasets
cover a period of 150 years (1951- 2100) and were
produced within the research project “CCSEAWAVS:
Estimating the effects of climate change on sea level and
wave climate of the Greek seas, coastal vulnerability and
safety of coastal and marine structures”. The forcing of
the models consisted of simulated data of wind and
pressure fields derived from a Regional Climate Model

(RCM), RegCM3. RegCM3 was built upon the NCAR-
Pennsylvania State University (PSU) Mesoscale Model
version 4 (MM4) [50]. The spatial resolution of the
model is 10x10 km and its future projections were forced
by the A1B emissions scenario.

The selection of representative points of the wave
height and storm surge model grid in the study areas, has
been performed utilizing the homogeneity measures of
Hosking and Wallis [51]. For each one of the two marine
variables examined, if the homogeneity measures are
lower than unity for a particular study area, then this area
can be characterised as adequately homogeneous. In the
present work, the homogeneity measures were assessed
based on the annual and also on the monthly maxima of
the wave height in the period 1951-2000, for all the
studied grid points and for the two study areas. Regarding
the extreme storm surge climate, the study areas were
judged to be acceptably homogeneous. For wave height
extremes, two distinct groups of grid points were
recognized in area 1, with large differences in extreme
wave height quantiles, while a single homogeneous group
of points was identified in area 2. In the present work, the

joint probability analysis has been conducted for a
selected grid point belonging to the homogeneous group
of area 1 with the highest wave height quantiles, grid
point P1 [25.30°, 40.65°] and for a grid point in area 2, P2
[25.15° 35.70°]. Concomitant data of wave height and
sea level height at the selected points were used in the
joint probability analysis. For the wave height data,
annual maxima corresponding to a period of 150 years
were selected. Due to the quite low values of the storm
surge in the Aegean Sea, sea level heights corresponding
to the respective wave height annual maxima were used
in the bivariate analysis.

6 Nonstationary analysis

6.1. Estimation of the margins

Annual maximum wave height data and simultaneous
sea level heights have been processed at the two selected
areas using a moving time window of forty years length.
The length of the window was selected short enough for
the assumption of stationarity to be quite sound and
adequate for the fitting of extreme value models and
more particularly for identifying the dependence structure
of the bivariate data. The GEV distribution was fitted to
all time windows for both the wave height and sea level
height data. The goodness of fit of the GEV distribution
function has been checked by means of the Kolmogorov-
Smirnov test and the model was identified as the most
suitable for both studied variables and for both areas. The
selection of the GEV as the marginal distribution for both
the wave height and the sea level height, has been
performed among different fitted models. The extracted
time dependent parameters for the wave height maxima,
U, o and &, from the 40-years moving time windows for
grid points P1 (N. Aegean Sea) and P2 (S. Aegean Sea)
are presented in Figure 2. The ordinary least squares
method has been utilised to fit linear and polynomial
trends to the parameter estimates. The significance of
linear trends has been assessed using the Mann-Kendall
test [52]. Polynomial trends have also been fitted to the
parameters of the GEV distribution function. The
statistical significance of polynomial terms has been
judged using the #-test [53]. An analysis of variance
(ANOVA) was then utilized to compare between trend
models with statistically significant polynomial terms, to
identify the simplest one that can provide an adequate
description of the inherent trend in the GEV parameters.
In Figure 2 the dashed blue line corresponds to the
statistically significant linear trends (5% significance
level), while dashed red lines represent statistically
significant polynomial trends. The order of the fitted
polynomials has been selected by means of the ANOVA.
For grid point P1, a statistically significant linear
negative trend has been detected in the location and the
shape parameter of the GEV, while the respective trend in
the scale had a positive sign. However, the analysis of
variance revealed the existence of polynomial trends of
fourth order for the location parameter and of third order
for the scale and the shape parameters. For grid point P2,
statistically significant linear trends have been detected
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Figure 2. Time dependent series of location (first column), scale (second column) and shape (third column) parameters of the GEV for
wave heights at grid point P1 (first row) and P2 (second row). Black dotted lines correspond to estimates from the 40-years moving
time window, dashed blue and red lines represent statistically significant linear and polynomial trends, respectively.

only in the location and shape parameters of the GEV for
wave height annual maxima. These linear trends are
positive for both parameters. The polynomial models
fitted to the three parameters, revealed statistically
significant trends of fourth order for the location and
shape parameters and of third order for the scale.

Figure 3 presents the respective time dependent GEV
parameter estimates for sea level height (storm surge) for
grid points P1 in the North Aegean Sea and P2 in the
South Aegean Sea. The dashed blue line corresponds to
the statistically significant linear trends, while dashed red
lines represent statistically significant polynomial trends,
based on the extracted results of the ANOVA. For grid

point P1 statistically significant linear negative trends
have been detected in the location and scale parameters
of the GEV, while for grid point P2 only the scale
parameter has a statistically significant linear negative
trend. The polynomial trends selected for the sea level
height data are mostly of second order. More specifically,
for grid point P1 in the N. Aegean Sea, a concave trend
has been detected in the location parameter, while
convex second order trends have been found for the scale
and the shape parameters. For grid point P2 in the S.
Aegean Sea, statistically significant concave trends have
been identified for the location and scale parameters of
the GEV, while convex trends have been found in the
shape parameter.
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Figure 3. Time dependent series of location (first column), scale (second column) and shape (third column) parameters of the GEV
for sea level heights at grid point P1 (first row) and P2 (second row). Black dotted lines correspond to estimates from the 40-years
moving time window, dashed blue and red lines represent statistically significant linear and polynomial trends, respectively.
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6.2. Estimation of the dependence structure

After estimating the marginal distributions for both the
wave height and the sea level height data, copula
functions have been fitted to the pseudo-observations of
the different 40-years moving time windows. The
copulas fitted to the bivariate samples are the one-
parameter Archimedean copulas (Clayton, Frank,
Gumbel), as well as the # Copula. The goodness of fit test
of Genest et al. [44] has been applied to select the best
fitted copula (Section 3) among the different candidate
models. Figure 4 presents results of the parametric
bootstrap goodness of fit test for grid points P1. The
upper part of the Figure illustrates the results of the
statistic S, for the different copulas, while the lower part
presents the corresponding p-values, together with the
level of statistical significance 5% (represented as a solid
black line).
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Figure 4. Parametric goodness of fit results for grid point P1.
The upper panel shows results of the statistic S, for different
copulas. The lower panel shows the corresponding p-values.

For grid point P1, the Frank copula provides the
lowest values of the S, for a large part of the studied time
interval. Regardless of the fact that it does not always
yield the lowest values of the statistic, it leads to the best
fit in the majority of cases, with p-values estimated high
enough for the entire time interval. It should also be
noted that p-values of the Frank copula are estimated
above the 5% significance level for all time steps.

Figure 5 provides similar information to Figure 4 for
grid P2. For grid point P2, the selection of the
appropriate copula function is not as evident as in the
case of P1. The fact is that for P2, none of the four tested
models results in the lowest values for S, for the largest
part of the studied period and none of them is associated
with p-values higher than the significance level 5% for
all time steps. However, the Gumbel copula seems to
result in the lowest S, values for the last eighty years,
while there are only very few time steps, where the p-

value for the Cramér-von Mises statistic falls below 0.05.
Therefore the Frank and the Gumbel copulas have been
selected for grid points P1 and P2, respectively.
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Figure 5. Parametric goodness of fit results for grid point P2.
The upper panel shows results of the statistic S, for different
copulas. The lower panel shows the corresponding p-values.

After selecting an appropriate copula function, the
dependence structure has been fitted to the bivariate
pseudo-observations of each moving 40-year time
window and the dependence parameter of the copula has
been calculated. Figure 6 presents the time dependent
parameter of the selected copula functions for annual
maximum wave heights and associated sea level heights,
for grid points P1 (top) and P2 (bottom). The dashed blue
and red lines correspond to statistically significant linear
or polynomial trends, respectively.
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Figure 6. Dependence parameter of the Frank and Gumbel
copulas for grid points P1 (top) and P2 (bottom), respectively,
and fitted linear (blue) and polynomial (red) trends.



E3S Web of Conferences 7, 02002 (2016)

DOI: 10.1051/e3sconf/20160702002

FLOODrisk 2016 - 3" European Conference on Flood Risk Management

For grid point P1, a statistically significant linear
positive trend has been detected in the dependence
parameter of the Frank copula. A statistically significant
linear positive trend has also been detected in the
dependence structure of the Gumbel copula for grid point
P2. However, a polynomial function of third order has
been judged to describe the variation of the Frank or the
Gumbel dependence parameter in a more detailed way
(dashed red line), for grid points P1 and P2, respectively.

With the time dependent marginal distributions for
wave height and sea level height data and the time
dependent copula parameters, joint exceedance
probabilities can be assessed for any joint event.
Considering events with a low probability of exceedance,
the temporal variation of the joint exceedance probability
of wave heights and storm surges can be extracted by
constructing joint exceedance probability isolines,
considering the temporal variations detected in the
marginal distributions of the studied variables as well as
in the dependence structure. In the present work, the
polynomial functions selected for the marginal
distributions of wave heights and sea level heights, and
for the dependence structure of the data, were used to
assess the joint estimates of the studied variables

Sith (m)

Hs (m)

corresponding to a return period of 100 years (joint
exceedance probability P=0.01). Figures 7 and 8 present
time dependent joint exceedance probability isolines for
each year in the interval 1990-2100 for grid points P1 in
the N. Aegean Sea and P2 in the S. Aegean Sea,
respectively. For all the studied years the joint
exceedance probability is Pz=0.01. The left part of
Figures 7 and 8 corresponds to the period 1990-2050,
while the right to 2051-2100. The points correspond to
the bivariate observations of the entire sample (1951-
2100).

For grid point P1, for the period 1990-2050 (left
panel of Figure 7), the probability isolines cover a wide
range of values especially for the wave height data. Wave
height marginal values increase within this interval from
7.2m to almost 8m, while sea level height marginal
values decrease from 0.54m to almost 0.49m. For the
period 2025-2050, a significant increase of extreme wave
heights corresponding to a joint exceedance probability
P;=0.01 has been observed. During the years 1990-2000,
a decrease has been observed in the bivariate estimates of
both the wave height and the sea level height extremes
corresponding to Pr=0.01. Wave height marginal
estimates progressively increased shortly after year 2000,
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Figure 7. Time dependent joint exceedance probability isolines for Pr=0.01 for bivariate data of wave height and sea level height at
grid point P1. The left panel corresponds to the period 1990-2050, and the right to 2051-2100. The colour bar refers to the last year of
each moving time window.
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Figure 8. Time dependent joint exceedance probability isolines for Pr=0.01 for bivariate data of wave height and sea level height at
grid point P2. The left panel corresponds to the period 1990-2050, and the right to 2051-2100. The colour bar refers to the last year of
each moving time window.
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while sea level heights continued to decrease until the
middle of the 21% century. For the period 2051-2100
(right panel of Figure 7), a significant decrease in
marginal wave height estimates has been noticed. Wave
height marginals in the year 2100 range at almost 6.6m.
During the same period, sea level height marginals
slightly increase to about 0.52m. The effect of the
dependence structure on the joint estimates of wave
heights and sea level heights can also be noticed. The
dependence structure decreases until the beginning of the
century, then there is a subsequent quite steep increase up
to year 2080 followed by a decrease up to 2100.

For grid point P2, the marginal estimates of the wave
height also cover a wide range of values. In the period
1990-2050 (left panel of Figure 8) the wave height
decreases from 7.4m to 6.8m, while sea level height
slightly increases. In the period 2050-2100, the marginal
wave height estimates increase up to almost 8m in the
early 2080’s and then decrease again to almost 7.4m. On
the other hand, sea level heights decrease from 0.36m to
0.27m. The shape parameter of both the wave height
maxima and the concomitant sea level height determines
the aforementioned variations in a very significant way.
It should be noted that for grid point PI, the scale
parameter variations seemed to influence more the time
dependent joint exceedance probability estimates for the
two variables. For both grid points in the second half of
the century the range of variation of wave height
marginals is higher than the one for the first half. For sea
level height, the highest variation in the marginal
distribution has been noticed in the first half for grid
point P1 and in the second one for grid point P2.

The most likely design event, corresponding to the
event with the highest likelihood to occur is then defined
for each joint exceedance probability isoline. Figure 9
presents the time dependent design estimates of both the
wave height and the associated sea level height. The
upper panel shows the variation of the most likely wave
event for grid points P1 (blue curve) and P2 (red curve).
The figure includes the most likely events extracted using
the parametric trends in the marginals and in the
dependence parameter (solid lines), as well as the events
extracted without considering the parametric trends, but
by just using the results extracted from applying the
moving time windows for estimating the marginals and
the dependence function of the data (dotted lines). It
should be noted that the approach used here to select the
so called most likely design event is not the most
appropriate one. Instead, the response to the defined joint
flooding source could be used, and the “design event”
could be found as the point of intersection of the
response and the survivor function of the source. Several
combinations of the relevant variables could also be used
and the system’s response to the bivariate flooding
source could be simulated, to finally select the bivariate
data that maximise the cost-benefit ratio.

For both P1 and P2 the wave height most likely
events present an almost polynomial variation. In fact
they can be fitted by fourth order polynomials quite
satisfactory. For grid point P1, the most likely wave
event ranges between 4.40m and 5.72m, while for grid
point P2 this range becomes 4.63m to 5.51m. For grid

point P1, the wave height event takes its maximum value
in the second half of the 21* century (before 2070), while
for grid point P2 the maximum wave height is noticed in
the first half (just after 2020). For the sea level height the
variations are not that significant. At both grid points, a
parabolic polynomial can represent these variations quite
well. For grid point P1, the sea level height ranges
between 0.44m and 0.54m, while for P2 this range
becomes 0.23m to 0.40m.
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Figure 9. Time dependent development of the most likely event
for wave heights (upper panel) and sea level heights (lower
panel) at grid points P1 (blue line) and P2 (red line).

The total water level at the coast is approximated in
the present work as a sum of the wave-induced run-up at
the coast (Eq. (27)) and of the sea level height in the
nearshore area. It has been assumed that the sea level
height near the coast is almost equal to the one estimated
in the deeper water. However, this is just an
approximation and more detailed analysis is necessary to
extract more reliable estimates of the storm surge at the
coastal zone. The wave induced run-up has been
estimated for two beach profiles, one for each selected
grid point at the coastal area of Thrace (N. Aegean Sea)
and Heraklion, Crete (S. Aegean Sea). The selected
beach profile in the coastal area of Thrace [25.21°,
40.94°] has a beach slope of almost 4%. The beach width
at the selected location is 28m, while the beach berm
height is almost 1.Im. In the coastal area of Heraklion,
the selected profile [25.36°, 35.34°] is characterised by a
slope of 5%, a beach width of 40m and a berm height of
2m. Figure 10 presents the water level, defined as the
sum of wave induced run-up and sea level height, near
the above mentioned coastal areas in the interval 1990-
2100. The upper panel corresponds to the estimated
water level for the first selected profile in the coastal area
of Thrace, while the lower panel corresponds to the
second profile in the coastal area of Heraklion. To
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estimate the wave induced run-up, wave periods
associated with annual maxima wave heights have been
extracted and fitted to a conditional GEV distribution
function with parameters given by Eq. (28). Wave period
quantiles corresponding to a return period of 100 years
(Pg=0.01) were then calculated for the interval 1990-
2100, using the estimates of the wave height most likely
design events presented in Figure 9 (input wave heights
correspond to the dotted lines of Figure 9).
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Figure 10. Time dependent development of the water level
(sum of wave induced run-up and sea level height) at selected
profiles in the coastal areas of Thrace (upper panel) and
Heraklion, Crete (lower panel)

For the selected profile in the coastal area of Thrace,
the water level in the interval 1990-2100 ranges from
1.79m to 2.14m, with the highest estimates observed in
the second half of the 21* century (between 2055-2060).
Water levels rise quite steeply after 2030 until 2060 and
then decrease again until the early 2080’s. For the
selected profile in the coastal area of Heraklion, the water
level ranges from 1.88m to 2.43m. The highest estimates
have been noticed in the period 1990-2060. After 2060,
water level estimates decrease quite steeply. In the period
1990-2060, a linear increasing trend can be observed in
the estimates of the sum of wave induced run-up and sea
level height. The highest water level estimates are
assessed around 2030 and 2050.

7 Conclusions

In the present study a novel approach introduced by
Bender et al. [39] has been utilised and further developed
to investigate the changes in the joint probabilities of
extreme wave heights and associated sea level heights
with time. The dependence of the studied variables has
been modeled using copulas. The nonstationary GEV
distribution has been utilized to model the marginal
distribution functions of the variables, with a 40-year
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moving time window. All parameters of the GEV were
tested for statistically significant trends. Then different
copula functions were fitted to model the dependence
structure of the data. The nonstationarity of the
dependence structure of the studied variables was also
investigated. Design events of wave height and sea level
height were extracted and finally, water level estimates at
the coast were produced for selected beach profiles in the
study areas.

The nonstationary analysis of the marginals revealed
statistically significant trends in all parameters of the
GEYV for both the wave height and the sea level height at
the selected areas of the Aegean Sea. Third or fourth
order polynomial trends have been detected in the GEV
parameters for the wave height annual maxima, while
second order polynomial trends were judged to describe
best the variation of the GEV parameters of the sea level
heights. Third order polynomials were also fitted to the
dependence structure of the studied variables for both
areas of the Aegean Sea considered.

For the studied area of the N. Aegean Sea (Thracian
Sea), the joint exceedance probability isolines revealed
an increase of marginal wave height estimates in the first
half of the 21 century from 7.2m to 8m, and a decrease
in sea level heights (almost 10%). In the second half of
the century, a significant decrease in extreme wave
heights has been noticed. Wave heights in the year 2100
were assessed at almost 6.6m. During the same period,
sea level height marginal estimates slightly increased. It
has been noticed that the scale parameter variations
significantly influenced the time dependent joint
exceedance probability estimates for the two variables.
For the studied area of the S. Aegean Sea (marine area of
Heraklion) wave height decreased from 7.4m to 6.8m in
the period 1990-2050, while sea level height slightly
increased. In the period 2050-2100, the marginal wave
height estimates increased up to almost 8m, while sea
level heights decreased from 0.36m to 0.27m. The shape
parameter of both the wave height maxima and the
concomitant sea level height had a significant effect on
the aforementioned variations.

For both study areas, the wave height most likely
events presented a fourth order polynomial variation. For
the selected area in the N. Aegean Sea, the most likely
wave event ranged between 4.40m and 5.72m, with the
maximum value assessed in the second half of the 21"
century (before 2070). For the selected area in the S.
Aegean Sea, wave height most likely events varied from
4.63m to 5.51m, with the maximum quantile noticed in
the first half of the century (just after 2020). For the sea
level height the variations were not that significant.

Finally, water levels at the coastline were assessed for
two selected profiles in the two study areas, calculating
the sum of the wave induced run-up and the sea level
height. For the selected profile in the coastal area of
Thrace (N. Aegean Sea), the water level in the interval
1990-2100 ranged from 1.79m to 2.14m, with the highest
estimates assessed in the second half of the 21" century.
For the selected profile in the coastal area of Heraklion,
the water level ranged between 1.88m and 2.43m. The
highest estimates were noticed in the period 1990-2060.
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This work summarises a first approach to the
nonstationary modeling of wave height and sea level
height data. The methodology presented can be further
evolved by using two parameter copulas, to overcome the
problem of goodness of fit of the selected dependence
structure to all time windows. The selection of design
events could be further examined and more advanced
approaches, better oriented to flooding hazards, can be
adopted. Finally, a more reliable and robust methodology
can be used to assess the water level at the coastline,
considering its different components and their
transformations from deep water to the nearshore area.
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