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Abstract. Flood risk analysis often involves the integration of multivariate probability distributions over a domain
defined by a consequence function. Often, solutions of this risk integral involves Monte-Carlo sampling techniques,
whereby 1000’s of potential flood events are generated. It is necessary to evaluate the consequence of flooding for
each sampled event. A significant computational time is required in running flood related physical process models,

making it computationally impractical to evaluate flood risk using this approach. To overcome the computational

challenges, this paper focusses on the Gaussian Process Emulator (GPE) meta-modelling approach. Traditionally, a
“look-up table” method is used when a large number of simulations from a numerical model are required. This
approach typically involves simulating conditions defined across a regular matrix, and then linearly interpolating
intermediate conditions. In this paper we compare a traditional “look-up table” approach to the GPE and analyse their
performance in approximating SWAN wave transformation model. In both cases, selecting an appropriate training

design set is important and is taken into consideration in the analysis. The analysis shows that the GPE approach

requires significantly fewer SWAN runs to obtain similar (or better) accuracies, enabling a substantial reduction in
computation time, hence aiding the practicality of Monte-Carlo sampling techniques in advanced flood risk

modelling.

1 Introduction and background

Flood risk is generally recognized as the product of
probability and consequence where the probability relates
to probabilities of flood hazards e.g. extreme rainfall,
river flows, coastal waves and sea levels or multivariate
combinations of these variables. The probability can also
relate to the performance of flood defence infrastructure
and likelihood of failure. By definition, flood risk
analysis involves the integration of multivariate
probability distributions over a domain defined by a
consequence function. Often, solutions of this risk
integral involve the use of Monte-Carlo sampling
techniques, whereby tens of 1000’s of potential flood
events are generated through statistical sampling
techniques. It is, in principal, necessary to evaluate the
consequence of flooding for each of these sampled
events. There is, however, typically a significant
computational time involved in running physical process
models that are capable of simulating the consequences
of flooding. It can therefore become computationally
impractical to evaluate flood risk using this approach.

Coastal flood risk in the UK is recognized to relate to
both extreme offshore waves, winds (local wind-
generation) and sea levels. To evaluate coastal flood risk
it is therefore necessary to extrapolate these variables to
extreme values, whilst accounting for the dependency
between the variables. There are various methods that
have been employed to do this. A robust multivariate
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extreme value approach is described by [1], and this has
been implemented in coastal flood risk analysis by
[2,3,4]. The output of the method is a Monte-Carlo
simulation comprising 1000’s of extreme events with the
potential to cause coastal flooding. For each event it is
required to model the transformation of waves from
offshore to nearshore, wave overtopping, flood
inundation and impact. Various models exist for
undertaking this analysis. It is however, computationally
challenging and impractical to execute all the models for
each event.

To overcome the computational challenges in
practice, a few representative training events are
simulated and the rest of the events are evaluated using
various approximation techniques. Traditionally, within
coastal modelling, a “look up table” (LUT) approach
based on a number of training events selected from a
regular grid is used. These training events conditions are
simulated and used to approximate the SWAN model
using linear interpolation to evaluate intermediate
conditions. More recently, advances in research show that
more efficient and accurate meta-modelling approaches
can be applied. These approaches include: Piecewise
Polynomials, Neural Networks, and Gaussian Process
Emulators (GPE). This paper focusses on the GPE meta-
modelling approach which has been shown to have
advantages over other approaches [5].

Suppose, there exists a large set of pre-selected
events, D, that a model needs to be evaluated at. Each
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model run is however, computationally intensive, and
thus time consuming to evaluate. The objective of this
analysis is to minimize the number of model runs, n,
required in order to estimate the model evaluations at all
events in D to an appropriate degree of approximation.

The case study used in this paper uses data generated
from the SWAN model. This model is a third generation
spectral wave model for obtaining realistic estimates of
wave parameters in coastal areas, lakes and estuaries
from given wind, bottom and current conditions, [6]. The
model can compute how waves transform across the
model domain by taking into consideration different tidal,
wave and wind boundary conditions. The output of
SWAN includes several parameters describing the
properties of the wave at a given near shore location.
Each model run can take up to few hours to evaluate.

This paper extends analysis undertaken by Camus et
al [7-8] and presents an analysis of the benefits of using a
GPE of the SWAN spectral wave transformation model
over the traditional “look-up table” approach within the
context of a coastal flood risk analysis modelling chain.
Additionally, in both cases, selecting appropriate training
events is important, hence the efficiency of selecting the
training events and the span of the training events are
taken into consideration in presenting the analysis.

2 Approximation techniques

Both, the traditional LUT method and the proposed
GPE method, follow a two-step approach to approximate
the SWAN model. First, appropriate training events are
selected from the full set of events, D and the model is
evaluated at these events. Next, using the training events
and the respective model evaluations as training data, we
estimate the model output for all the other events in, D.

2.1 The Traditional LUT Approach

The LUT approach uses a regular grid technique to
select the representative training events. Typically, a user
selects a number of values from a rectilinear grid across
each input dimension and chooses to run the model at all
combinations. Occasionally, some combinations are
excluded based on prior knowledge of e.g. the geography
of the site and boundary conditions. It is important to
note that the training events selected are not well spread
out in terms of coverage of each marginal input. If, for
instance, each input has only 4 distinct values and the
model is only sensitive to one input, there are essentially
only 4 unique training data. Additionally, the number of
training events required to get suitable predictions
increases exponentially with the number of input
dimensions.

Once the training events are selected, the computer
model is run at those conditions and model evaluations
are obtained. Linear interpolation is then carried out to
evaluate the model evaluations at all the remaining events
inD.

2.2 The Proposed GPE Approach

A GPE is defined as a statistical process that
approximates a deterministic input - output computer
model. Here we review the principles of GPE’s without
too much mathematical detail; further details and
discussions are given by Kennedy and O’Hagan [9-10].

Let y = f(x) represent a real valued computer model
evaluation for a single event at inputs, x = (xy, ..., X).
GPE’s are applied in a Bayesian framework, where the
posterior distribution is given as the product of a prior
distribution and training data expressed as a likelihood
function. The prior distribution represents initial beliefs
of the computer model before any data is available. These
initial beliefs can be represented by a Gaussian Process
distribution as follows:

f(')lﬁ!o-2~GP(m0!V0('l')) (1)
where m, is a mean function described as
m,(x) = h(x)"B, 2

where h(x) is typically a linear function of input
variables and B is the vector of unknown coefficients.
The covariance function V;(.,.) satisfies:

Vo(f (), f(x)]0?) = a%c(x, x"), 3)
where ¢? is an unknown correlation parameter and
c(x,x") is some covariance function. For the purpose of
this analysis, we use the Gaussian covariance function
defined as:

c(x,x) = exp( =1 (%)2> 4)

for roughness parameters &;.

The GPE is used to approximate the computer
model given a set of training events, X = (x4, ..., X,), and
their true model evaluations, y; = f(x1), ..., Yn =
f(x,). In order for the GPE to give appropriate
predictions, it is important that the training events are
selected in a way that they are well spread out and as far
as possible from each other. Such a design is said to have
space filling properties.

One way of selecting the training events for a GPE
approach is to use the Maximum Dissimilarity Algorithm
(MDA), described by [11], and as applied in the context
of coastal analysis by [7]. This is a sampling technique
that is based on the distance in the multidimensional
space from each point. Given an initial value, the MDA
choses the next point based on the point that is the
furthest away in Euclidean distance in the
multidimensional space from the point it started with,
having standardized the variables. This method outputs a
subset of points which efficiently represents all the events
inD.

Other alternative training point selection methods
include; Optimised Latin hypercube designs — where a set
of randomly chosen points are selected subject to a
constraint that ensures that across each input, values are
evenly spread. However, this method does not guarantee
that the training events are space filling, and further
optimisation needs to be carried out. More details (and
other methods) can be found in [12 au-dessous]. One
reason for choosing the MDA over the other techniques is
that the event set is known a priori and it also selects a
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subset of the events in D, hence, some of the final
evaluations will be exact.

The training events and their model evaluations are
used as training data for the emulator. The emulator is
then fitted to this data, and used to approximate the
computer model at a larger set of events. The GPE
outputs a posterior distribution where the mean of the
distribution represents the best estimate of the model and
the variance of the distribution represents the uncertainty
around this estimate.

The posterior mean, given a new set of inputs x, is
represented mathematically as follows:

h(x)"B + t(x)" A (y — HB) (5)
whereas, the posterior variance is evaluated as:
clx,x) — t(x)TA t(x")
+ (h(x)T
— t(xX)TATTH)(HTAT*H) Y (h(x)T
— t(x)TATH)T

(6)
where
t(x)T = c(x,x1), ..., c(x, x;,)) @)
A= [e(xx)] ®
HT = (h(xl)! R h(xn)) (9)

The GPE is used to predict the model evaluation for all
the remaining events in D.

2.3 Discussion

In this section, we have explained the details of two
methods used to approximate some model evaluations. In
both approaches the ideal way of selecting training events
for the estimation used is explained, and the estimation
technique is also described.

For the LUT approach, training events do not cover
the marginal input space efficiently, however it allows
for some incorporation of prior knowledge. Additionally,
since points need to be in a regular grid format, the
training events selected are not necessarily a subset of D,
and the number of training events required increases
exponentially with the number of input dimensions,
making this approach, as a whole, computationally
inefficient. However, the second step for the LUT
approach is very easy to understand, and although it
requires training data on a regular grid, the linear
interpolation itself is very efficient.

In contrast, for the GPE approach, the MDA method
not only efficiently selects events that are both marginally
and multi-dimensionally well spread out, but also selects
events that are a subset of D. Moreover MDA is an
automated process, and even though, it is
computationally time consuming to apply where D is
extremely large, in reality, D is seldom significantly large
enough.

The output from a GPE is a distribution, which
means that not only do we obtain a prediction but we also
obtain the value for the uncertainty around this
prediction. Moreover, the GPE doesn’t require the
training events to be in a regular grid format, which is
beneficial in that some of the predictions of events in D
will be exact, and as the training events are more spread
out the GPE can estimate appropriately with fewer

training events. This is illustrated in the next section
using a case study.

3 Case study

In this section, the methods described above are
compared to find an appropriate prediction of the SWAN
model. This case study is based in the Red Sea at Jizan,
Saudi Arabia, and is particularly difficult to model as the
nearshore area is partly sheltered by shallow reefs (as
illustrated in Figure 1). The strong variations in fetch
lengths and bathymetry make it a relatively complex area
to accurately predict wave conditions.

For this case study, we chose p =5 uncertain
parameters to serve as inputs to the SWAN model which
describe the boundary conditions. We denote the 5
independent input parameters x = (x4, ...,Xs) and are,
namely; significant wave height (H;,fr, measured in
meters), peak wave period (T,,, seconds), wind speed (C,
meters per second), wave direction (Byygpe, °N) and wind
direction (Bying, °N). The remaining parameters, e.g.
water level are fixed at values chosen by the modelers.
The model predicts the corresponding nearshore wave
conditions of significant wave height (Hg), mean wave
period (Ty,_10) and mean wave direction (0) at all points
across the model domain.

Bathymetry
m CD

Figure 1. Bathymetry plot of offshore area

The full set of events, D, at which SWAN needs to be
evaluated at are a series of boundary wave and wind
conditions at 3 hourly time steps starting from 1st
December 1983 to 31st December 2009 which total
64949 time steps or events. In both cases the training
events were selected based on this entire set of events.
Due to time constraints, the model could not be run for all
these events, hence SWAN was run for a subset of these
events (1 January to 31" December, 1984) which
contained 1757 events. These model evaluations are used
to assess the accuracy of each approximation technique.
No measured data was available to validate the accuracy
of the SWAN model itself



E3S Web of Conferences 7, 04002 (2016)

DOI: 10.1051/e3sconf/20160704002

FLOODrisk 2016 - 3" European Conference on Flood Risk Management

We use the MDA method to select up to 1000
training events for the GPE approach. For the LUT
approach the time series of offshore waves and wind
conditions are discretized into a four dimension look-up
table comprising 6 discrete wave height, 10 wave
direction, 8 wind speed and 13 wind direction bins. Any
combination of these parameters that does not occur in
the boundary time series is then ruled out, leaving a total
of approximately 1200 training events.

In Figure 2, we show a plot of the selected training
events for the two approaches. For the LUT approach we
used approximately 1200 training events (asterisks) and
for the GPE approach we plot only the first 100 training
events (diamonds). The full set of events, D are plotted in
light grey circular points. From these plots we can see

inefficiently cover the sample space, whereas the MDA
selected points for the GPE, are well spread out. In some
cases, for instance, the plot of wave direction against the
peak period it looks like the points for the LUT approach
have a lot fewer events. This is because they are in the
form of a recti-linear grid, and many points lie on top of
each other.

We used the respective selected training events to
approximate the model evaluations at the events
generated by SWAN model runs for 1984. We compared
the predictions using a Root Mean Square Error (RMSE)
which is calculated as:

RMSE = \/%Z?zl (f(xi) - f(xi))z,

(10)

that the points selected for the LUT approach
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Figure 3. RMSE for Wave height, period and direction using LUT(dashed line — with 1200 training events)

and GPE (solid line — using between 10 to 1000 training events).

where f(x;) represents an approximation to f(x;) at x;.
The lower the RMSE the better the approximation.

We used 1200 training events to predict the model
evaluations (at each outputs) for the year 1984 using the
LUT approach, and -calculated the RMSE of the
predictions against true model evaluations from the
validation data. This is represented by the dashed line in
Figure 3. For the GPE approach we varied the number of
training events from 10 to 1000 to predict the model
evaluations to find the minimum number of training
events required to match the RMSE of the LUT approach.
We also show that if we use nearly as many training
events as the LUT approach we can achieve much better
accuracies.

Figure 3 compares the RMSEs of the predictions for
the three different outputs. It is evident that the GPE
approach can achieve similar accuracy using only 100
training events. Moreover if more training events are
used, further gains in accuracy can be achieved. It is
noticeable that there are a few inconsistencies in the GPE
approach, however on average RMSE decreases with an
increase in training events. All further analysis assumes
that 100 training events were used for the GPE approach.

It is also important to assess how well the predictions
are on an individual basis. Figure 4 compares the true

SWAN output against the GPE (red) and LUT (blue)
predictions. The black solid line represents perfect
predictions, the points that are closest to the black line are
better predictors.

From Figure 4 it is evident that all the predictions
using the LUT approach are more widely spread out,
which suggests that the predictions are far from the true
SWAN output. The predictions from the GPE approach,
on the other hand are less widely spread out, and from
this we can conclude that the GPE approach is a much
better way of predicting the model.

Figure 5 shows a time series plot of the predicted
wave period to illustrate how well the prediction methods
compare with the SWAN model results. We chose the
wave period plot at this particular time period to illustrate
the credible intervals, and to demonstrate the accuracy of
a prediction at a training point. The solid (black) line
represents the true SWAN output. The long dashed line
(blue) represents the predictions form the LUT approach
and the dotted and dashed lines (red) represent the GPE
approach. This shows that the GPE approach provides a
better estimate of SWAN output and the dotted red line
represents the 95% credible interval as produced by the
GPE. Note, only 20 consecutive events are shown in this
figure.
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Figure 4. Comparison of approximations for LUT and GPE with the true SWAN output



E3S Web of Conferences 7, 04002 (2016)
FLOODrisk 2016 - 3" European Conference on Flood Risk Management

DOI: 10.1051/e3sconf/20160704002

T(m-10)

Time series plot of approximations of Wave period

SWAN

LUT

GPE

- 95%CI for GPE

"~

Subset of consecutive training events

Figure 5. Comparisons of LUT and GPE approximations of Wave Period

Figure 5 shows that the true SWAN output appears
between the 95% credible intervals for a majority of time.
It is also visible that the credible intervals widens and
narrows depending on how uncertain the prediction may
be. Moreover, at point 1 (indicated by the arrow in Figure
5), which was one of the training events for the GPE
approach, it is evident that the credible interval collapses
to zero and the prediction for the GPE approach is equal
to its true value. This property holds for all training
events in the GPE approach.

4 Discussion and Conclusion

In this paper, we have used a basic univariate GPE
approach and shown that, with only a few training events,
the GPE approach can give more accurate predictions
compared to the a traditional LUT approach. Further
gains are expected to be made using multivariate GPE
approaches, and perhaps using different training event
selection methods.

Moreover, the use of the GPE approach allows us to
potentially increase the spatial resolution or complexity
of the model to allow more detailed and accurate
analysis. The GPE approach also provides a basis for
more accurate and efficient uncertainty and sensitivity
analysis to be carried out.

This method has proven to be effective in practice. A
recent national scale analysis undertaken in England has
used the technique to generate a large nearshore wave
dataset. This data set has the potential to be used for a
wide-range of purposes including a coastal flood risk
assessment, and has great potential for use in climate
change impact assessments and coastal flood forecasting.
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