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 Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models 
of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of 
a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse 
complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of 
available models are restricted to single-phase flow through fracture and permeable porous rock. This is not 
compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In 
this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and 
host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as 
Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method 
(XFEM) while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous 
matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. 
The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified 
against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model 
robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic 
fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial 
saturation on leak-off and the fact that single-phase models may underestimate the leak-off.  

1�Introduction��
Flow through fractures in deforming porous media has 
been the subject of great interest in many engineering 
disciplines. Typical examples are: fractured oil reservoirs 
[1], hydraulic fracturing for enhanced hydrocarbon 
production, tight gas reservoirs [2], weakly consolidated 
offshore sediments [3], soft coal bed methane extraction 
[4], geothermal energy [5,6], isolation of hazardous waste 
[7], measurement of in situ stresses [8], fault reactivation 
[9], and remediation of soil and ground water aquifers 
[10] to name a few. 

Hydraulic fracturing is a complex multi-physics 
problem. A fluid is injected into the host rock; the 
fracture initiates and propagates due to the induced 
hydraulic loading. The simulation of the process requires 
several components: (i) flow of the fracturing fluid within 
the fracture; (ii) the mechanical deformation of the 
porous medium due to the applied hydraulic load; (iii) the 
fracture propagation; (iv) the leak-off flow to the 
surrounding porous media (host rock); and (v) the fluid 
flow through the host medium. The first three 
components are widely addressed in the literature, while 
last two are considered only in few studies albeit with 
some restrictions.  

Based on the energy-dissipation mechanism and the 
ability of the rock matrix to dissipate fracturing fluid, 

four combined asymptotic regimes are defined: storage-
viscosity, storage-toughness, leak-off-viscosity and leak-
off-toughness [11]. Asymptotic solutions provide 
fundamental understanding of the hydraulic fracturing 
process, and provide benchmarking cornerstones for 
numerical models. However, analytical solutions are 
restricted to simplified fracture geometries in 
homogenous media and are typically constrained to a set 
of fixed boundary conditions. Standard geometries are 2D 
plane-strain fractures (PKN fracture [12, 13]; KGD 
fracture [14-16], and radial (penny-shaped) fractures [17-
19]. 

In majority of the available models, the flow through 
rock matrix and the fluid exchange between fracture and 
rock matrix, is either ignored by assuming impermeable 
rock formations, e.g. [20], or simplified using one-
dimensional analytical leak-off model, e.g. [21]. The 
impermeable matrix assumption is proven to be an 
unrealistic assumption by the substantial evidence of 
conductive rock matrix [1, 4]. One-dimensional leak-off 
model, on the other hand, is based on Carter’s one-
dimensional leak-off model [22], which is represented as 
a sink term in the mass balance equation of fracture flow. 
This approach has several shortcomings including one-
dimensional assumption of flow, time-dependency of 
flow instead of pressure-dependency and more 
importantly ignoring the poroelastic effects. Flow 
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dissipation through rock matrix is multi-dimensional 
unless the permeability in the direction normal to the 
fracture plane is significantly higher than in other 
directions [23]. Also, the fluid exchange between fracture 
and matrix depends on the pressure gradient, while in 
Carter’s leak-off model the fluid leak-off rate at a given 
location within the fracture depends only on the 
fracturing fluid pressure history at this position and does 
not depend on the pressure in the adjacent regions. As 
time elapses, the leak-off rate at each position decreases 
proportionally to 1/√t, where t is time; therefore, a 
scenario of fracture arrest is not possible [24]. Finally, the 
seepage of the fracturing fluid into the rock formation 
increases fluid pressure in the matrix causing dilation of 
rock matrix. Dilated matrix applies stresses back on the 
fracture, known as ‘back-stress’ in hydraulic fracturing 
context, tending to close the fracture [19, 25, 26]. These 
shortcomings have also affected the available semi-
analytical solutions for leak-off-dominated regimes that 
use simplified one-dimensional leak-off model in 
deriving solution equations. These solutions fail to 
predict hydraulic fracturing parameters in leak-off-
dominated regimes accurately as shown in [23], and in 
[27] for single-phase flow, and in [24] for two-phase flow 
in two-dimensional case. 

In this paper, a fully coupled extended finite element 
model for hydraulic fracturing in porous media is 
proposed. Two fluids: fracturing fluid and host fluid are 
considered. The independent fluid flow for the porous 
host medium makes the present model capable of 
simulating multidimensional leak-off fluid flow through 
high/low permeable, homogeneous/inhomogeneous host 
medium with transient pressure boundary condition at the 
fracture-rock boundary. The fracture discontinuity in the 
deformation model is handled using XFEM technique, 
while cohesive crack model is used as fracture 
propagation criteria. The model is verified against several 
benchmark solutions from the literature. It is shown that 
leak-off is higher when partial-saturation of rock matrix 
is considered. 

2�Governing�equations��
The model proposed comprises five phases and three 
models: rock skeleton (deformation model), wetting and 
non-wetting fluids in fracture (fracture flow model), and 
wetting and non-wetting fluids in matrix (matrix flow 
model). The differential equation describing poroelastic 
deformation of rock matrix can be written as [24]  

div(1/2 D( du+du )-βwdppwI- βnwdppnwI)+dF=0 (1) 

where u donates the displacement vector of the 
porous medium, β is the incremental effective stress 
parameter, p is the fluid pressure, I is the second-order 
identity tensor, and F is the body force per unit volume. 

Following the cohesive fracture mechanics, a traction-
separation law governs the nonlinear behaviour of the 
fracturing medium in the cohesive zone. In addition to 
cohesive traction, in fluid saturated fracture 
discontinuities, the hydraulic loading is applied to the 

fracture planes. The hydraulic loadings can be either 
positive for pressurised fluid within the fracture or 
negative due to suction in the lag region. Therefore, the 
natural boundary conditions for loading at the fracture 
discontinuity is expressed as 

dσ.nc=dt-dpf nc    (2) 

where σ is the total stress, t is the cohesive tractions, 
pf is the average fluid pressure within the fracture, and nc 
is the outward unit vector normal to the discontinuity 
(Figure 1). Notice that in the above equation Biot’s 
coefficient is not applied to fracture loading, and that the 
fluid pressure in the fracture is treated identical to an 
external pressure applied to fracture planes. Such a 
pressure does not require scaling according to Biot’s 
coefficient. 

The flow through planar fracture is commonly 
modelled using lubrication theory [28] for an 
incompressible Newtonian fluid obeying cubic law. 
Lubrication equation is derivable from general Navier-
Stoke’s equation for the flow between two parallel plates 
[29]. The fracturing fluid can have properties 
substantially different from those of the host fluid. 
Furthermore, depending on the in-situ stresses, the 
fracturing fluid front and the fracture front may not 
coincide, giving rise to the so-called fluid lag 
phenomenon [1, 30, 31]. In the lag region, the host fluid 
enters the fracture under the developed suction. 
Therefore, a second fluid is required to complete the 
fracture flow model. 

Independent fracture flow model is considered for 
fracture discontinuity in this research. Fracture pressures 
are calculated directly, which may be linked to multiple 
pore pressures within the porous medium. The objective 
is to obtain a more realistic representation of fracture 
flow compared to current models presented in the 
literature in which gradient of fracture flow is calculated 
entirely based on the enriched component of the fluid 
pressures [32, 33, 34]. The extended lubrication equation 
considering compressibility of fluid constituent and fluid 
transfer between fracture and matrix (leak-off) can be 
written as [24] 

∂/∂l [Sfξ kfrξ  w3/(12μξ ) ∂pfξ/∂l] = Sfξ wcξ ∂pfξ/∂t + 
Sfξ∂w/∂t + w∂Sfξ/∂t + kpξ/μξ  (pfξ-ppξ)/y) (3) 

 

where w is the fracture aperture, μ is the fluid 
dynamic viscosity, Sfξ is the degree of saturation of the 
fluid ξ, kfr is the relative permeability, cξ is the fluid 
compressibility, ppξ is the fluid pressure in the adjacent 
matrix, , y is the distance between fracture and adjacent 
matrix, and l is the dimension along the fracture. The 
change in saturation is linked to the change in capillary 
pressure (suction) through available capillary pressure-
suction curves. In this study the relationships proposed by 
van Genuchten-Mualem (VGM) model are utilised for 
capillary pressure-saturation and for relative 
permeability-saturation interpolations. Details are given 
in [24]. Note that fracture pressure loading on the fracture 
walls (Eq. 2) and fracture aperture in Eq. 3 provide 
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symmetric coupling between mechanical deformation and 
fracture flow models. 

A mathematical description of fluid flow through host 
porous medium can be derived by combining linear 
momentum balance equation (Darcy’s law) with the mass 
conservation equation of the fluid. Such partial 
differential equation can be written as 

div[kpw/μw ( ppw + ρwg)] = βw ∂(div u)/∂t + λpw,pw 
∂ppw/∂t + λpw,pnw∂ppnw/∂t + kpw/μw (ppw-pfw)/y (4) 

div[kpnw/μnw ( ppnw + ρnwg)] = βnw ∂(div u)/∂t + 
λpnw,pnw ∂ppnw/∂t + λpnw,pw∂ppw/∂t + kpnw/μnw (ppnw-

pfnw)/y  (5) 

λpw,pw = nSpwcw + (βw - nSpw )cs - n∂Spw/∂sp  (6) 

λpnw,pnw = nSpnwcnw + (βnw - nSpnw )cs - n∂Spw/∂sp  (7) 

λpw,pnw  = λpnw,pw  = -n∂Spw/∂sp    (8) 

where, n is the porosity and sp is the capillary 
pressure(suction) in the porous medium. The pressure 
field is assumed continuous across the fracture 
discontinuity, with the discontinuity in the Darcy flow 
velocity normal to the fracture taken into account through 
leak-off loading. Note that leak-off terms in Eqs. 3 and 4 
provide symmetric coupling between two flow models. 

 
 Schematic representation of the problem with the 

body Ω, boundary Γ, fracture boundary Γc. 

 

3�Numerical�approximation��
Spatial discretisation has been performed using the 
standard Galerkin method with displacements and fluids 
pressures defined as primary variables. Extended finite 
element method (XFEM) is used to model the fracture 
discontinuity within displacement field at element level. 
Arbitrary discontinuities can be handled using XFEM 
without the need for remeshing. In XFEM, the 
displacement field consists of two parts, one continuous 
and the other discontinuous. The continuous part is the 
standard displacement field corresponding to the situation 
without any cracks. The discontinuous displacement field 

(also known as enriched part) is based on local partitions 
of unity and allows the element to include a discontinuity. 

Heaviside step function, also known as ‘jump’ 
function, is typically used to enrich the nodes in fully 
cracked elements if their support was cut by the crack 
into two disjoint pieces [35]. To obtain numerical 
solution of the governing equations, the rate form of the 
discretised equations is integrated over the time domain. 
The time integration is performed using a generalized 
trapezoidal method.  

The set of discretised equations are highly nonlinear. 
Nonlinearities arising from fluid pressure dependency of 
constitutive coefficients are handled using Picard method 
such that the coefficient matrices appearing in the 
stiffness matrix as nonlinear functions of unknown 
variables are updated in every iteration. The four-node 
quadrilateral elements together with two-point Gaussian 
quadrature rule are used for numerical approximation and 
numerical integration. Numerical integration of the 
elements bisected by the fracture discontinuity is done 
using common method of element partitioning in which 
numerical integration is done separately within each sub-
domain. The model has been implemented in a well-
known code (Matlab) and verified against several 
analytical solutions and published results [27, 36]. 

4� Hydraulic� fracturing� in� partially�
saturated�medium��
In these examples, a viscous fracturing fluid is injected 
into a fracture with initial length of 1 m. The host 
medium is assumed to be saturated with gas as non-
wetting fluid at atmospheric pressure. The model 
dimensions and mesh configuration is shown in Figure 2. 
The model parameters used are: Young’s modulus E=50 
GPa, Poisson ratio υ=0.25, tensile strength ft=1000 kPa, 
and fracture energy Gf=0.1 KN/m. The fracture is 
assumed to have plane-strain behaviour (KGD fracture) 
with fracture height of 100 m. 

The fracturing fluid with dynamic viscosity μw=1×10-4 
kPa.s and compressibility coefficient cw=1×10-6 kPa-1 is 
injected into the fracture at the rate Qw=1 m3/min. The 
dynamic viscosity of gas is assumed as μnw=1×10-8 kPa.s. 

The simulated examples in this section include: i) the 
case with impermeable rock matrix (kp=0) to validate 
current model against available semi-analytical solutions, 
ii) the case with low matrix permeability (kp=1×10-13 m2) 
and iii) the case with high matrix permeability (kp=1×10-

12 m2). The medium porosity in all examples is n=0.01. 
Geertsma and de Klerk [14] obtained an approximate 
analytical solution for the case without leak-off and with 
negligible toughness (KGD model). Later, Spence and 
Sharp [15] extended the solution to include fracture 
toughness. 

The results from present study for the net well 
pressure, the fracture aperture and the fracture half-length 
are shown in Figures 3 to 5, respectively. Included in 
these figures are the analytical solutions by Geertsma and 
de Klerk [14] and Spence and Sharp [15]. In Figure 5 the 
solution by Carbonell et al. [37] for the limiting case of 
storage-viscosity regime and the solution by Adachi and 
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Detournay [16] for leak-off dominated regime are also 
included. The leak-off dominated solution is calculated 
for the most permeable case with kp=1×10-12 m2 which 
represents the most suitable case for this solution. 

 
 Model used for hydraulic fracturing simulations. 

For the impermeable case very good agreement is 
found between present model results and KGD analytical 
solutions for net well pressure and fracture aperture at the 
wellbore. KGD solution is for viscosity dominated 
regime (zero toughness), and the parameters used in the 
present simulation falls in to the viscosity-dominated 
regime. This is verified through computing the 
dimensionless viscosity and toughness: M=308 and 
K=0.239 [38]. Viscosity-dominated regime is in 
accordance with actual hydraulic fracturing practice, 
where the energy dissipation associated with the flow of 
viscous fracturing fluid often dominates over the energy 
dissipation associated with the rock damage [19]. Spence 
and Sharp [15] calculated higher net well pressure due to 
including finite toughness. The fracture half-length 
(distance from fracture origin to the fracture tip) is larger 
than the analytical solution due to the pressure lag ahead 
of the fracturing fluid front as shown in Figure 6. The 
size of the lag region can be affected by the in situ 
stresses [11, 30]. The in situ stresses are considered zero 
in these simulations to allow the formation of lag zone. 
Negative pressure (suction) is induced in the lag region. 
If the position of the fracturing fluid front is considered 
instead of the fracture tip, as shown in Figure 5, a perfect 
match is observed between present model and KGD 
results. Again, Spence and Sharp [15] calculated slightly 
lower fracture length, while Carbonell et al. [37] 
calculated higher fracture length for the limiting case of 
viscosity-storage regime.  

When the leak-off is allowed by considering 
permeable host medium, a significant portion of the 
injected fracturing fluid is dissipated into the surrounding 
media. This causes smaller fracture aperture and lower 
fracture propagation. The net well pressure on the other 
hand remains higher and maintains a steady leak-off flow 
towards rock matrix which becomes equal to the injected 
flow rate as time elapses. The higher the medium 
permeability, the sooner the equilibrium. For the case of 
higher medium permeability, the equilibrium is reached 
within five minutes, consequently, the fracture aperture 
and half-length are stabilised and no fracture propagation 
is observed. This implies that all the injected fracturing 

fluid are dissipated into the host rock. The model results 
for the high permeable case are in good agreement with 
the analytical solution by Adachi and Detournay [16]. 
The solution is for leak-off-dominated-regime based on 
the 1D Carter’s leak-off model. However, in late time 
response the two models diverge as the current model 
approaches an equilibrium in which there is no further 
fracture growth and the entire injected fracturing fluid is 
dissipated into the host medium, while the analytical 
solution predicts fracture growth proportional to square 
root of time. Note that the Carter’s leak-off model is for 
single-phase flow. 

 

 
 Well pressure versus elapsed time. 

 
 Fracture aperture at the well versus elapsed time. 

 
 Fracture half-length versus elapsed time. 
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 Fracture opening, fluid front, fluid lag, and cohesive 

zone. 
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 The invaded zone showed by contours of degree of 

saturation of hydraulic fracturing fluid within host medium, top: 
kp=1×10-12 m2, bottom: kp=1×10-13 m2. 

The shape of the invaded zone, i.e. the zone within 
host medium saturated by fracturing fluid, also depends 
on the permeability of the host medium. Figure 7 shows 
the contours of the degree of saturation of fracturing fluid 
within host medium for the two examples with permeable 
rock matrices. For the case with higher permeability, 
lower pressure gradient is required to push fracturing 
fluid into the porous medium so the invaded zone shape 
is short and dispersed, whereas for the case with the 
lower permeability it is elongated and thin. In the latter 
case, higher pressure-gradient is required to push 
fracturing fluid into the porous medium, so the higher 
fracture pressure is developed which causes longer 
fracture propagation and the preferred path for the 
fracture flow is along the fracture. 

5�Conclusions��
A fully coupled XFEM model for hydraulic fracturing in 
partially saturated medium is presented. Five phases are 
identified: solid skeleton, wetting and non-wetting fluids 
in fracture, and wetting and non-wetting fluids in rock 
matrix. Simulation results show that fluid dissipation is 
higher than what is predicted by asymptotic solutions. 
One-dimensional analytical leak-off model cannot 
accurately capture multidimensional leak-off. 
Furthermore, leak-off is higher when the matrix partial 
saturation is accounted for.   
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