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Abstract. The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A 

network approach is used within a statistical volume element (SVE), suitable for subsequent use in hydro-mechanical 

analysis and incorporation within multi-scale numerical modelling. The soil pore structure is modelled by a network 

of cylindrical pipes connecting spheres, with the spheres representing soil voids and the pipes representing inter-

connecting throats. The locations of pipes and spheres are determined by a Voronoi tessellation of the domain. 

Original aspects of the modelling include a form of periodic boundary condition implementation applied for the first 

time to this type of network, a new pore volume scaling technique to provide more realistic modelling and a new 

procedure for initiating drying or wetting paths in a network model employing periodic boundary conditions. Model 

simulations, employing two linear cumulative probability distributions to represent the distributions of sphere and 

pipe radii, are presented for the retention behaviour reported from a mercury porosimetry test on a sandstone.  

1 Introduction 

Realistic modelling of fluid retention behaviour of porous 

materials is important in many fields. Selection of 

parameter values within conventional analytical 

expressions for retention curves, such as [1], is normally 

based on back-fitting experimental retention curves. This 

does not provide insight to improve the understanding of 

the influence of microstructure on the fluid storage 

properties of the material. Discrete numerical modelling 

of fluid storage and transport in porous materials at the 

microstructural scale can improve this understanding. 

Since the pioneering work of [2], network models 

have been widely used for fluid retention and hydraulic 

conductivity modelling of porous materials, particularly 

in fields other than geotechnical engineering. Authors 

such as [3] and [4] investigated the influence of mean 

coordination number, sphere and pipe size distributions 

and spatial correlation on retention curves and relative 

permeability curves, including the influence of 

phenomena such as trapping and snap off. 

[2]-[4] aimed to improve qualitative understanding of 

the influence of microstructure on macroscopic fluid 

retention and transport properties of porous materials. 

Subsequently [5] proposed a calibration technique to 

quantitatively match experimental mercury intrusion and 

extrusion curves. This approach managed to reproduce 

retention curves for values of degree of saturation 

between 0.25 and 0.6. This calibration approach was then 

extended by [6], where the main objective was to deduce 

the material microstructure from experimental fluid 

retention curves and then evaluate the conductivity 

curves. Later this model was used in [7] for investigation 

of CO2 storage capability of sandstones due to trapping. 

Previous studies that attempted to quantitatively 

reproduce retention properties of porous materials by 

network modelling used computationally demanding 

algorithms and also resulted in relatively poor matching 

towards the tails of retention curves.  Also, most models 

involved the generation of 3-D networks based on cubic 

arrays that induce a structural regularity that could 

produce problems for potential usage in hydro-

mechanical analyses. Also periodic boundary conditions 

(PBCs) were applied on only 4 lateral faces of a statistical 

volume element (SVE), so that fluid could be injected 

from one of the remaining faces.  

In the present work, a novel computationally efficient 

irregular network model for achieving quantitatively 

realistic fluid retention modelling is described. Original 

features of the model include a new way of setting up 

analyses with full PBCs and a novel pore volume scaling 

technique, which avoids the need for excessively large 

networks to represent materials with a wide range of void 

sizes. The approach is suitable for future extension to 

hydro-mechanical and multi-scale numerical modelling. 

2 Network model  

The discrete numerical model for the analysis of fluid 

retention is based on a three-dimensional network model 

of one-dimensional pipes that connect spheres, with the 

spheres representing soil voids and the pipes representing 

inter-connecting throats. 

The network construction is based on a dual 

Delaunay-Voronoi tessellation. The domain is initially 

saturated with points placed randomly but with a 

restriction on the minimum separation distance dmin . The 
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Delaunay tessellation (consisting of irregular tetrahedra 

with their vertices at the points) is then applied and 

consequently its dual Voronoi tessellation is generated 

(consisting of irregular polyhedra, with each face of a 

polyhedron perpendicular to a Delaunay edge and 

intersecting this Delaunay edge at its mid-point). The 

spheres are then placed on the polyhedra vertices and the 

pipes along the polyhedra edges. This is a suitable 

approach for subsequent hydro-mechanical analyses, 

where the polyhedra are idealisations of the porous 

material grains surrounded by voids and throats, as 

discussed in [8]. Grain interactions can be modelled by 

placing mechanical elements along the Delaunay edges. 

A schematic presentation of four Voronoi polyhedra and 

their corresponding Delaunay edges is presented in figure 

1, with each polyhedral grain scaled down in the figure in 

order to provide a clearer visual impression (in the actual 

network the grains are in contact).  

 

 
 

Figure 1. Schematic presentation of four Voronoi polyhedra 

and the corresponding Delaunay tetrahedron. The spheres and 

pipes corresponding to a Voronoi polyhedron face are also 

presented.  

The work presented in this paper was restricted to 

analysis of fluid retention behaviour in a non-deforming 

material i.e. it did not include mechanical elements. 

Spheres and pipes each have a distribution of radii, 

each with a specified probability distribution function. 

Sphere radii are allocated first, on a random basis, with 

no spatial correlation. Pipe radii are then allocated to 

locations, with the smallest radii pipes allocated first, 

commencing with locations connecting to the smallest 

spheres. 

2.1 Periodic boundary conditions 

The numerical analysis of fluid retention presented in this 

paper was conducted on a network representing a cubical 

statistical volume element (SVE). Periodic boundary 

conditions (PBCs) were applied on all 6 faces of the 

SVE, so that the SVE was considered to repeat 

indefinitely in all directions. Traditional techniques for 

PBCs, of Lagrange multipliers or four driving nodes, are 

not well suited for irregular Voronoi and Delaunay 

networks. Instead a different PBC technique was used. 

This technique was presented in [9] for mechanical lattice 

elements in a 2-D domain, and in the current work it was 

extended to 3-D transport networks. This PBC approach 

requires special treatment of the network construction, 

because the elements are allowed to cross the SVE 

boundaries.  An example of a 3-D periodic transport 

network is presented in figure 2. It can be observed that 

the pipes, presented in grey, cross the SVE boundaries 

indicated by the black edges of the cell.  

 
 
Figure 2. Example of a 3-D fully periodic network where 

the grey and the black edges represent the pipes and the SVE 

edges, respectively. 

2.2 Pore volume scaling 

For a material with a wide range of void sizes, a SVE 

would require a very large number of smaller voids in 

order to also include a statistically representative number 

of larger voids. With a standard network, this would 

require a SVE with an impractically large number of 

spheres. In addition, a standard network could not capture 

the fact that the average centre-to-centre spacing of 

smaller voids should be much less than the corresponding 

spacing for larger voids, otherwise adjacent small voids 

would be unreasonably far apart (suggesting an 

exceptionally low local porosity) and two adjacent large 

voids would be impossibly close together (suggesting 

overlap of the two voids). In order to avoid these 

problems, a new approach was introduced, where each 

sphere within the network represents a scaled number of 

voids, with this scaling number increasing as the sphere 

size reduces. 

In the pore volume scaling technique, each sphere 

of radius rs is taken to represent not a single void but a 

non-integer number N of voids, each of radius rs, where N 

is given by 
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where rsm is the mean radius of the spheres. Eq.1 means 

that each sphere of radius smaller than the mean 

represents more than a single void, whereas each sphere 

of radius greater than the mean represents less than one 

void. This scaled number of voids means that each sphere 

represents a volume Vv of voids given by 
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Eq.2 shows that each sphere, whatever its radius, 

represents the same volume of voids. The volume of 

pipes is ignored in calculating the porosity or degree of 
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saturation of the SVE and therefore the porosity n of a 

cubical SVE of side length lSVE containing a total of m 

spheres is simply given by 

3
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 The advantage of the pore volume scaling approach 

is that the network model is able to represent a SVE 

containing a large number of small voids without 

excessive computational effort. In addition, local values 

of porosity internally within the SVE are realistic, rather 

than being unreasonably low in regions around smaller 

spheres and impossibly high in regions around the largest 

spheres. A disadvantage of the pore volume scaling 

approach is, however, that modelling of connectivity 

between voids, which is always imperfectly represented 

in a network model, may be represented less realistically 

than without scaling. This can be illustrated by 

considering the case of a sphere that is significantly 

smaller than the mean sphere radius rsm.. This sphere 

represents a substantial number N of voids, rather than a 

single void. The scaling technique means that local 

connectivity between these N voids is overstated, as they 

are all assumed to be at the same location in the network 

and are therefore perfectly connected to each other. In 

contrast, external connectivity between these N voids and 

other voids is understated, as only 4 pipes connect the 

single sphere representing all these N voids to other 

spheres. Reverse arguments apply to voids that are larger 

than the mean radius. 

3 Modelling retention behaviour  

Capillary suction Pc , applied uniformly throughout the 

SVE, was the driving variable for drying and wetting of 

the SVE during modelling of retention behaviour. The 

applied value of Pc was monotonically increased during a 

drying process and monotonically decreased during a 

wetting process. 

3.1 Representing drying and wetting processes 

The rules that determine, for a given value of Pc, which 

spheres are filled with the wetting fluid and which are 

filled with the drying fluid are based on the Young-

Laplace equation 

 Pc = 2 γ cosθ / r     (4) 

where γ is the surface tension and θ is the contact angle 

formed between the fluid-fluid interface and the solid 

(measured on the wetting fluid side).  r is the radius of a 

pipe during a drying process and the radius of a sphere 

during a wetting process, to represent the so-called “ink 

bottle” effect. A drying or wetting process is modelled by 

considering the intruding fluid moving from a void 

already filled with that fluid to a connected void not 

previously filled with that fluid i.e. direct connection to a 

void already filled with the intruding fluid is imposed as a 

requirement for a void to fill with the intruding fluid. The 

drying fluid is the intruding fluid during a drying path, 

whereas the wetting fluid is the intruding fluid during a 

wetting path. 

 Figure 3 illustrates the situation during a drying 

process. The hatched area corresponds to the wetting 

fluid. The drying fluid has already intruded through pipe 

1 into sphere A at a value of Pc corresponding to the 

application of Eq.4 with r as the radius of pipe 1. As the 

value of Pc is increased further during the drying process, 

the next consideration is when the drying fluid will 

intrude further from sphere A along either pipe 2 or pipe 

3. Pipe 2 is of larger radius than pipe 3, and therefore the 

first action to occur is intrusion of the drying fluid along 

pipe 2 and into sphere B, at a value of Pc corresponding 

to the application of Eq.4 with r as the radius of pipe 2. If 

either pipe 4 or pipe 6 was larger than pipe 2 the intrusion 

would continue along this pipe into an additional sphere 

without need for further increase of Pc. 

    

Figure 3. A simple 2-D network subjected to drying. The 

hatched areas represent the wetting fluid. The drying fluid is 

allowed to enter the network from pipe 1. 

Figure 4 illustrates an equivalent situation for a 

wetting process, with the hatched area again representing 

the wetting fluid. Wetting fluid has already entered 

sphere A from pipe 1, at a value of Pc corresponding to 

the application of Eq.4 with r as the radius of sphere A, 

and immediately moved into pipes 2 and 3. As the value 

of Pc is reduced further during the wetting process, the 

next consideration is when the wetting fluid will intrude 

into sphere B or sphere C. As sphere C is smaller than 

sphere B, the first thing that happens is intrusion of the 

wetting fluid into sphere C, at a value of Pc 

corresponding to the application of Eq.4 with r as the 

radius of sphere C, and immediate further movement of 

the wetting fluid into pipes 5 and 7. If either pipe 5 or 

pipe 7 connected to an additional sphere that was smaller 

than sphere C, the wetting fluid would continue into this 

sphere without need for further decrease of Pc. 

At each value of Pc during a drying or wetting 

process, the degree saturation Sr (expressed in terms of 

the wetting fluid) is calculated by considering the 

proportion of spheres filled with the wetting fluid 

(bearing in mind that each sphere, whatever its radius, 

represents the same volume of voids). Hence, if m is the 

total number of spheres in the SVE and mw is the number 

of these spheres filled with the wetting fluid, the degree 

of saturation Sr is given by 

    
m

m
S w

r       (5) 

 

    
 

  
DOI: 10.1051/, 9

E  2016-

E3S Web of Conferences e3sconf/20160911016
UNSAT

11016 (2016)

3



     

Figure 4. A simple 2-D network subjected to wetting. The 

hatched areas represent the wetting fluid. The wetting fluid is 

allowed to enter the network from pipe 1. 

In analyzing drying and wetting processes, no 

possibility of trapping of the non-intruding fluid is 

considered, because there is no consideration of whether 

there is appropriate connectivity to provide an exit route 

for the non-intruding fluid (connectivity requirements are 

applied to the intruding fluid, but not to the non-intruding 

fluid). In practice, trapping of the non-intruding fluid is 

not an issue if the non-intruding fluid can escape by 

diffusing through the intruding fluid and provided that 

drying or wetting is performed sufficiently slowly for the 

diffusion process to dissipate excess pressure in the 

trapped non-intruding fluid. 

3.2 Initiation 

With the use of PBCs, it is not possible to start a drying 

path from a fully saturated condition (Sr = 1) or a wetting 

path from a fully dry condition (Sr = 0), because there is 

no external boundary from which to introduce the 

intruding fluid. Instead, a drying path must start with at 

least one sphere within the SVE already filled with the 

drying fluid and a wetting path must start with at least 

one sphere already filled with the wetting fluid. 

 Investigation showed that realistic modelling of a 

drying or wetting path could not be achieved by starting 

with only a single sphere filled with the intruding fluid, 

because of the extremely low connectivity (only 4 pipes) 

from a single sphere and the consequent possibility that 

extreme changes of Pc might be required for the intruding 

fluid to break out from this first sphere (dependent on 

only the radii of the 4 pipes in the case of a drying path or 

the radii of the 4 spheres on the other ends of these pipes 

in the case of a wetting path) or to break out from the 

local region immediately surrounding the first sphere. In 

order to achieve realistic modelling, drying or wetting 

paths should start with a small number of spheres already 

filled with the intruding fluid and these “seeding” spheres 

should not simply be selected at random. Instead, to 

achieve realistic modelling of a drying path, it should 

always be preceded by modelling of a previous wetting 

path finishing with a small number of spheres (the 

seeding spheres) still filled with the drying fluid. A 

similar condition applies for realistic modelling of a 

wetting path, which should always be preceded by 

modelling of a previous drying path to leave an 

appropriate number of seeding spheres filled with the 

wetting fluid. 

 Investigation of this initiation process allowed an 

appropriate value to be selected for the number of 

seeding spheres (and hence the appropriate maximum 

starting value of Sr for realistic modelling of a drying 

path or appropriate minimum starting value of Sr for 

realistic modelling of a wetting path). This was 

confirmed by the fact that on subsequent cycling between 

these maximum and minimum values of Sr each cycle 

concluded with exactly the same configuration of spheres 

filled with the drying fluid. 

4 Application 

The network model, including the pore volume scaling 

technique and the initiation procedure, both described 

above, was used to study the retention behaviour reported 

by [5] from a mercury porosimetry test on sandstone. 

 
4.1 Procedure and input parameters 
 

In a mercury porosimetry test, air is the wetting fluid and 

mercury is the drying fluid, with mercury intrusion and 

extrusion corresponding to drying and wetting paths 

respectively. The contact angle θ measured on the air 

(wetting fluid) side is 40
o
 (see Table 1). 

The square data points in figure 5 show the 

experimental results of the wetting (mercury extrusion) 

and drying (mercury intrusion) curves respectively in Sr-

Pc space, where Sr is the degree of saturation of the air 

(the wetting fluid). For the wetting path, the maximum 

value of Sr reported in the experimental results was 0.6, 

because the authors in [5] stated that trapping of mercury 

prevented significant further increase of Sr, presumably 

because the wetting (mercury extrusion) was performed 

insufficiently slowly to allow escape of trapped mercury 

by evaporation and subsequent diffusion through the air. 

With the pore volume scaling technique described in 

Section 2.2, the fact that each sphere represents the same 

volume of voids means that the drying curve predicted by 

the network model (in Sr-Pc space) depends upon only the 

distribution of pipe (throat) sizes and the network 

connectivity i.e. it does not depend on the distribution of 

sphere (void) sizes. Similarly, the wetting curve predicted 

by the network model depends upon only the distribution 

of sphere sizes and the network connectivity i.e. it does 

not depend upon the distribution of pipe sizes. Probability 

distribution functions for the pipe and sphere radii were 

therefore selected by interpretation of the experimental 

results of the drying and wetting curves respectively. 

Figure 6 shows the experimental results re-plotted as 

Sr against back-calculated sphere or pipe radius r, by 

using Eq.4 to convert values of Pc to values of r. Of 

course, even for the idealised case of a network model 

simulation where the pore volume scaling technique was 

employed, these plots of Sr against back-calculated values 

of r would not represent the true cumulative probability 

distribution of sphere or pipe radii, because of the 

influence of network connectivity. For example, a 

network model wetting curve simulation presented in this 

way would only give the cumulative probability 

distribution of sphere sizes used in the network if there 
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had been perfect connectivity, with access of the wetting 

fluid to all spheres throughout the wetting process, so that 

spheres could be filled with the wetting fluid in the exact 

sequence of increasing sphere size. Similarly, a network 

model drying curve simulation of Sr against back-

calculated value of r would only correspond to the true 

cumulative probability distribution of pipe radii used in 

the network if network connectivity allowed filling of 

pipes in the exact sequence of decreasing pipe size and if 

each pipe then provided access to a sphere that was not 

previously filled with the drying fluid (the latter is not 

true because some spheres will already have been filled 

with drying fluid entering by another route). Despite 

these issues, it is informative to use the experimental 

results of Sr against back-calculated radius, shown in 

figure 6, to select the distributions of sphere and pipe 

radii for the network model. 

Table 1. Main input parameters. 

Parameters Value Units 

Mercury contact angle θ  40 ο 

Mercury surface tension γ 0.48 N m-1 

ap 2.0e+4 m-1 

bp 2.7e-5  

as 2.9e+3 m-1 

bs 3.9e-6  

dmin 0.756e-3 m 

lSVE 5.4e-3 m 

 

Inspection of figure 6 shows that the experimental 

plots of Sr against back-calculated value of r (from Eq.4) 

for both drying and wetting paths can each be 

approximated by a straight line, at least up to a certain 

value of Sr. For the drying curve this is true up to 

approximately Sr = 0.8 and for the wetting curve it is true 

up to the final experimental point (Sr = 0.6). Two best-fit 

straight lines were fitted to these parts of the two 

experimental sets of data, as shown in figure 6, to give an 

equation for the cumulative probability distribution of 

pipe or sphere sizes for input to the network model: 

barf       (6) 

Values of the coefficients a and b for pipes and spheres 

are given in Table 1. The linear cumulative probability 

distribution of Eq.6 corresponds to a uniform probability 

distribution between a minimum radius of b/a and a 

maximum radius of (1 + b)/a , and a mean radius of (1 + 

2b)/(2a). With the values of a and b presented in Table 1, 

the pipe radii varied between 1.35 e-9 m and 5.00 e-5 m, 

the sphere radii varied between 1.35 e-9 m and 3.44 e-4 

m and the mean sphere radius rsm was 1.72 e-4 m. 

Having defined the mean sphere radius rsm, the values 

of lSVE (the SVE side length) and dmin (the minimum 

distance between the randomly positioned points forming 

the Delaunay tessellation) were selected to give an 

appropriate number m of spheres within the SVE and to 

match the reported porosity of the sandstone of 0.21. The 

values of lSVE and dmin shown in Table 1 produced a SVE 

containing 1560 spheres. 

 

Figure 5. Comparison of the experimental results ([5]) to the 

mean numerical results in Sr-Pc space. 

 

Figure 6. Comparison of the experimental results ([5]) and the 

cumulative radii distribution curves to the mean numerical 

results in the Sr-r space. 

  

A series of 100 analyses was performed. The same 

network geometry was used for all 100 analyses, but 

different sphere and pipe radii generation and allocation 

were undertaken for each analysis. The number of the 

seeding spheres used for the initiation procedure 

described in Section 3.2 was 1% of the total number of 

spheres, so that drying and wetting curves were simulated 

over a range of Sr from 0.99 to 0.01. The same 

increments of suction were applied for all 100 analyses.   

 

4.2 Results 
 

The circular data points in figure 5 show the results of the 

network model simulations in Sr-Pc space. Values of Sr 

represent the average from the 100 analyses. Comparison 

with the experimental results shows that the network 

model simulation of the drying curve overestimates 

values of Sr at low values of Pc and underestimates values 
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of Sr at high values of Pc. The network model simulation 

of the wetting curve underestimates values of Sr at all but 

the lowest experimental value of Pc. 

The circular data points in figure 6 show the results 

of the network model simulations re-plotted in the space 

of Sr against back-calculated radius r (where Eq. 4 was 

used to convert values of Pc to corresponding values of 

r). Figure 6 provides insights into some of the 

mismatches between model simulations and experimental 

results in figure 5. 

In figure 6, comparison of the network model 

simulations of Sr against back-calculated r with the 

cumulative probability distributions of spheres and pipes 

used as input for the network model (shown by the 

straight lines in figure 6) highlights the influence of 

network connectivity on wetting and drying curves. For 

example, the network model simulation of the wetting 

curve predicts lower values of Sr than those 

corresponding to the cumulative probability distribution 

of sphere sizes, because network connectivity means that 

some smaller spheres cannot be intruded with the wetting 

fluid at their expected value of Pc, because access of the 

wetting fluid to these spheres is shielded by some larger 

spheres. As the degree of saturation increases, the 

network model simulation converges with the cumulative 

probability distribution of spheres, because this shielding 

effect reduces as more spheres are filled with the wetting 

fluid.  

The model simulations in figure 5 could be tuned to 

better match the experimental results by adjusting the 

values of some of the input parameters in Table 1. This 

would mean, however, that the method had reverted to no 

more than a curve fitting exercise. Proper assessment of 

the achievements and limitations of network model 

simulations of retention behaviour can be achieved only 

by using inputs for the sphere and pipe probability 

distribution functions derived from independent imaging 

of the material microstructure, rather than from back-

analysis of retention behaviour from mercury porosimetry 

tests. 

One significant point to emerge from figure 5 is that 

the match achieved between model simulations and 

experimental results was better than in previous network 

model simulations [10] which did not use the pore 

volume scaling technique, even though these earlier 

simulations included substantial tuning of input 

parameter values to try to achieve the best possible 

match. This provides encouraging evidence on the 

usefulness of the pore volume scaling technique. 

5 Conclusions 

A network model was used to study retention behaviour 

in unsaturated materials. Original aspects of the 

modelling included a form of periodic boundary 

conditions applied for the first time to a 3-D transport 

network, a new pore volume scaling technique and a new 

procedure for initiating drying or wetting paths in a 

network model employing periodic boundary conditions. 

The model is suitable for future extension to hydro-

mechanical and multi-scale analysis. The model was 

applied to the simulation of a mercury porosimetry test 

on sandstone, with linear cumulative probability 

distribution functions selected for both sphere and pipe 

sizes, based on back-analysis of the experimental test 

results. Comparison of model simulations with both 

experimental results and the cumulative probability 

distributions used for sphere and pipe sizes provided 

useful insights into the roles of network connectivity on 

drying and wetting retention curves predicted by network 

models.  
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