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Abstract. In this contribution a new model for partially saturated porous media is presented, within the framework of
gradient poromechanics,  based on a phase field approach. While the standard retention curve is expected still  to
provide  the  intrinsic  retention  properties  of  the  porous  skeleton,  depending  on  the  porous  texture,  an  enhanced
description of the surface tension between the wetting and the non-wetting fluid, occupying the pore space, is stated
considering a regularized phase field model based on an additional contribution to the overall free energy depending
on the saturation gradient.  This approach provides similar results as those of the model based on the concept of
specific interfacial area. The dependence of the free energy on the gradient of the saturation also implies that Darcy
law must be extended to become a fourth order partial differential equation.

1 Introduction

The constitutive characterization of partially saturated
porous media became of interest at the middle of the last
century  when  the  scientific  research  started  to  face
fundamental  problems  in  geotechnics  and  petroleum
engineering, concerning the response of partially imbibed
soils, during drainage-imbibition cycles, or modeling the
behavior  of sedimentary reservoir  rocks,  when a multi-
phase fluid flows through the porous space. Starting from
the analysis of basic static problems, it became clear that
the  balance  between  capillary  and  driving  forces,  in
particular  gravitational  forces,  would  have  been  the
central  subject of the modeling efforts.  This pushed the
research in the direction of finding out a relation between
the curvature  of  the  wetting/non-wetting fluid interface
and  the  average  content  of  the  wetting  fluid,  say  the
retention curve for the macro-scale capillary pressure. For
long  time  this  last  has  been  the  only  relation  used  to
describe  the  hydraulic  flow  through  partially  saturated
porous  media,  being  also  the  pivot  of  the  hydro-
mechanical  coupling  with  the  constitutive  law  of  the
porous skeleton, see e.g. Alonso et al. [1]. 

In the same period Cahn & Hilliard [2] established the
basic framework of modeling multi-phase flow in terms
of space and time evolution of a phase field, continuously
varying over thin interfaces. Surface tension is recovered,
in  this  context,  considering  the  integral,  through  the
thickness of the layer, of the phase field gradient.  This
approach progressively attracted more and more interest,
in  particular  within  fluid  mechanics,  because  of  its
advantages  for  numerical  calculations;  however  limited
contributions attempted at incorporating these ideas into
modeling of unsaturated porous media [3].

In this paper a novel  general  approach is developed
which  aims at  merging  phase  field  modeling  of  multi-
phase  flow  with  unsaturated  strain  gradient
poromechanics.  While  the  standard  retention  curve  is
expected to still provide the intrinsic retention properties
of the porous skeleton, depending on the porous texture,
an enhanced description of surface tension between the
wetting  and  the  non-wetting  fluid,  occupying  the  pore
space,  is  stated  considering  a  regularized  phase  field
model.

2 Thermodynamics

Thermodynamics  of  porous  media  has  been
summarized by Coussy [4] for two or more monophasic
superimposed interacting continua, say the solid skeleton
and the fluids saturating the porous space. In this case,
the specific internal energies of the fluids are separately
defined, whether they are in the liquid or in the gaseous
phase;  whilst  the  energy  due  to  interfacial  interactions
between the fluids and among the solid and the fluids are
incorporated into the macroscopic energy of the skeleton.
Here  a novel  approach  is  adopted in  order  to  account,
within the framework of poromechanics, for the role of
the interface between a liquid (water) and a gas (wet air),
describing the mixture as a non-uniform diphasic fluid,
which can reside in the liquid or in the gaseous phase.
The fluid internal energy is given by:

     Ef = nfef(1/f, sf)+f(f),     f= (nf), (nf),  (1)

where  fef  is a double-well potential parametrized by the
mass density, per unit volume of the mixture,  f and the
specific  entropy  sf,  n being  the  Eulerian  porosity.  The
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non-local energy  f penalizes the formation of interfaces
and provides a regularization of the non-convex energy
fef.  The  state  equation  of  the  fluid  defines  the
thermodynamic pressure  P and the chemical potential  ,
in terms of the the mass density f:

           P = – ef/(1/f),     = (fef)/f        (2)

however, because of equation (1), these quantities are not
sufficient to completely characterize the constitutive law
of  the  non-uniform  fluid,  which,  on  the  other  hand,
necessitates of specifying the so-called fluid hyper-stress
vector,  related  to  the  derivative  of  f with  respect  to
(nf),.  In  the  following incompressibility  of  the  liquid
phase is assumed which implies the variation of  f to be
univocally determined by the variation of the saturation
degree Sr, f = LSr, L being the intrinsic constant density
of the liquid phase. The liquid (gaseous) phase therefore
corresponds to Sr=1 (Sr=0). 

From  now  on  attention  is  focused  on  isothermal
processes,  a  Duffing-like  potential  for  the  volumetric
energy is assumed:

                 f = f ef = C (nw/R) Sr
2(1 – Sr)2                (3)

where nw is the surface tension between the non-wetting
and the wetting phase  and  R the average  characteristic
size of the channel through which the non-uniform fluid
can pass. Let moreover the non-local term f be quadratic
in the gradient of  nSr. The first and the second principle
of thermodynamics,  together with the expression of the
internal  working  relative  to  a  strain  gradient  porous
continuum  [5],  allow  to  state  the  constitutive
prescriptions  for  the  overall  Piola–Kirchhoff  stress  and
hyper-stress,  Sij and  Pijk,  required  to  verify  the  overall
balance of momentum (Sij – Pijk,k),j + bi = 0, as well as the
generalized constitutive characterization of the capillary
pressure  Pc and  the  fluid  hyper-stress  vector  k.  After
cumbersome calculations, see [7], one gets

 Sij = S'ij – (P – SrPc) ij – k (2Eij,k – ij(nSr),k/(0Sr)  (4)

Pijk = P'ijk – k ij (5)

Pc = – s/Sr+(k/Sr)(Jk/J), k/(Sr) = – s/Sr)k

                     (6)

 (0) being the Lagrangian (initial) porosity, and  J the
determinant  of  the  Jacobian  matrix,  relative  to  the
deformation  of  the  overall  porous  continuum.  S'ij =
s/Eij and P'ijk = s/Eij,k are the generalized effective
stresses, prescribed in terms of the partial derivatives of
the skeleton free energy  s =  –  f  with respect to
strain and strain gradient,  being the free energy of the
overall  porous  continuum.  Equations (4)-(6)  hold  true
within the assumption of small elastic strains.

Thermodynamics also implies the fluid dissipation to
be positive which yields the generalized Darcy law:

 – P,k/Sr + (Pc – (l/(nSr)),l),k + bk
f/(Sr) = AklMl/L      (7)

where  Ml is the Lagrangian filtration vector and  Akl the
inverse of permeability. Introducing the capillary energy
U, so that s/Sr= U/Sr,  implies equation (7) to be
rephrased as follows:

– ((f+U)/Sr – (s/Sr)l)l),k+bk
f/(Sr) = AklMl/L.

                                                                                   (8)

The role of  the  capillary  energy  U is  therefore  that  of
modifying the double-well potential  f which prescribes
the free energy of the fluid, in order to account for the
wetting  properties  of  the  solid  skeleton.  The  new free
energy f+U, which can be called effective energy of the
pore-fluid, has not the same minima as  f,  as they are
shifted  inward  the  interval  (0,1)  from  below  or  from
above, whether the solid skeleton is gas or liquid wet. 

3 Characterization of the pore-fluid

Providing a constitutive characterization of the pore-fluid,
say  of  the  fluid  within  the  pore  network,  is  generally
achieved,  in  unsaturated  poromechanics,  assuming  the
capillary  pressure  Pc to  be a  prescribed  function  of  Sr.
Here  the  liquid-gas  mixture,  which  saturates  the  pore
space,  is  regarded  as  a  non-uniform  fluid,  the
corresponding saturation ratio being used to characterize
the  state  of  the  fluid  at  any  current  placement.  No
distinction is made explicit between the pressure of the
liquid and the pressure of the gaseous phase, as well as
between the corresponding chemical potentials. Moreover
no  explicit  algebraic  relation  between  the  saturation
degree  and  the  capillary  pressure  or  the  effective
chemical  potential  of  the  fluid  eff,  defined  in  what
follows, can a-priori be stated, without solving, at least at
equilibrium, the generalized Richards equation:

       d(Sr)/dt – {Ksat k(Sr)[eff
,k + bk

f/(Sr)]},k = 0 (9)

eff = (f+U)/Sr – (s/Sr)l)l     (10)

Here  the  permeability  of  the  porous medium has been
assumed isotropic: (A-1)kl = Ksatk(Sr)ij, Ksat and k(Sr) being
the so-called saturated and relative permeabilities of the
wetting  phase,  respectively.  At  the  stationary  state,
equation (9) reduces to a fourth order partial differential
equation in the space variable, which is definitely similar
to the one prescribing the mass density distribution of a
Cahn-Hilliard  fluid  at  equilibrium.  However  a
fundamental additional term is here accounted for, say the
derivative  of  U with  respect  to  Sr,  which  allows  for
describing the confining effect on the non-uniform fluid,
due to the presence of the porous skeleton. 

The role of  f and  U in the characterization of the
distribution of Sr,   and Pc deserves a deeper discussion.
Consider  the  chemical  potential  of  the  pure  fluid,
prescribed by equations (2)-(3), say 

= f/Sr = Lghf,     hf = 2C (nw/(LgR)) Sr (1–3Sr+2Sr
2)

                (11)

and  the  derivative  of  the  capillary  energy, relative  for
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instance to a sand, and given by the van Genuchten curve 

U/Sr = – LghU,    hU = (1/){[(Sr–Sr
res)/(1–Sr

res)]-1/m–1}1/n

          (12)

Sr
res being the residual value of saturation; the two curves

are  depicted in Figure 1 (upper panel,  gray dotted and
gray  dashed  lines,  respectively).  Both  the  chemical
potential  and  the  derivative  of  the capillary  energy  are
expressed  in  head  units  adopting the  classical  Leverett
scaling,  which prescribes  the  characteristic  length  R in
terms of the intrinsic permeability of the soil   and the
initial porosity 0:R = (/0)1/2 The profile of the negative
chemical  potential  of  the  pore-fluid,  say  – (+U/Sr),
plotted against Sr, is also drawn (solid line). It exhibits a
non-monotonic  behavior  and  two  additional  zeros  (the
spots) with respect to the one at  Sr=1, which can always
be found,  when considering only the capillary pressure
Pc. This feature corresponds to the fact that the energy f

+  U maintains the double-well shape typical  of  f,  see
Figure 1 (lower panel). However the two minima of f +
U are no more isopotential and the one associated to the
smallest value of Sr is shifted inwards the interval (0,1).

Figure 1. In upper panel heads of the chemical potential   of
the  pure  fluid  (dotted  gray  line),  of  the  derivative  of  the
capillary energy (dashed gray line) and of the negative pore-
fluid  chemical  potential  –(+U/Sr)  (solid  black  line)  are
depicted;  in  the lower  panel  the  corresponding  energies.  The
parameters which characterize the retention curve are those of a
sand. 

This non-monotonic behavior of the pore-fluid chemical
potential resembles that one postulated by DiCarlo [7] in
order to explain the formation of gravity fingers in soils.
However it is worth to underline that the appropriate form
of the potential  –U/Sr should be captured  solving an
inverse  problem  which  stems  from  experimental
evidence. 

Notice  that  the  effective  generalized  chemical
potential  eff can  be  hydrostatic  at  equilibrium,  and
consistent  with  gravitational  loading,  even  if  the  pore-
fluid chemical potential  + U/Sr is not.

4  Micro-scale  interpretation  of  the
generalized constitutive law of capillary
pressure

Equation   (6)   explicitly   improves   the  basic   constitutive
prescription  of   the  macro­scale  capillary  pressure  by  a
correction   depending   on   the   gradient   of   the   Jacobian
determinant  J  and the gradient of the water content  nSr,
once the quadratic form f  for the non­local contribution
to   the   energy   of   the   fluid   has   been   assumed.   As   a
consequence  when   the  hyper­stress   acting  on   the  non­
uniform fluid vanishes, this correction vanishes as well;
in other words the larger the gradient of the liquid content
is,   the wider the discrepancy between the standard and
the enhanced constitutive prescriptions of Pc will be. The
enhanced   constitutive   prescription   of  Pc is   therefore
expected   to   yield   significant   modifications   of   the
capillary   pressure,   in   the   narrow   subdomains   of   the
current   shape  of   the  porous  medium where   significant
gradients   of   the   liquid   content   can   be   detected.   This
justifies an interpretation of this contribution in terms of
the so­called specific interfacial area, see [8].

According   with   experimental   data,   reported   among
others in [9], and pore­network numerical simulation, see
e.g.   [10],   local  variations  of   the  macroscopic  capillary
pressure   are   accompanied   not   only   by   changes   in   the
saturation   degree   but   also   by   changes   in   the   average
interfacial   area  anw,   which   accounts   for   the   local
cumulative measure  of   the  interfaces  between  the non­
wetting and  the  wetting phase (per  unit  volume of   the
Representative Volume Element, RVE). Even if changes
in the interfacial  area may not result   into a (incoming/
outcoming)   flow   through   the   RVE,   however,   in   this
analysis,   only   such   kind   of   variations   of  anw  are
considered.  No account,  on the other  hand,   is   taken of
those variations of the interfacial area which yield a pure
remodeling   of   the   internal   structure  of   the   RVE.  This
assumption will  be clarified   in  the following when  the
homognization   scheme   adopted   to   upscale   information
from   the   micro   to   the   macro   scale   is   introduced   and
briefly   discussed.   Its   rationale   however   resides   in   the
identification  of  a   relation  between   the   interfacial  area
and  the  gradient  of   the   saturation  degree,   to  hold   true
only if the liquid particles are displaced to the boundary
of the RVE. 
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To verify   the validity  of   this  hypothesis  a  heuristic
micro­scale analysis is developed deforming a prototype
reference   configuration  B0  of   a  RVE by a  quasi­static
loading  path  driven  by   the  Lagrangian  gradient  of   the
macro­scale   Jacobian   determinant  J;   the   liquid   is
squeezed   out   of   the   porous   chamber   along   the   same
direction of the gradient of J. The saturation degree Sr is
assumed not to be affected by the considered micro­scale
deformation,   which   means   that   the   ratio   between   the
volume of the liquid and the volume of the pores within
the RVE does not vary during the deformation process.
This assumption allows to capture the correction to the
constitutive prescription  of  Pc  provided by the gradient
term   of   the   fluid   energy   only.   In   Figure   2   possible
reference configurations of the RVE, parametrized by the
degree of saturation are depicted.

                (a)                                              (b)                    

Figure  2. Referential  RVEs  parametrized  by  the  saturation
degree:  (a)  Sr=  0.667298;  (b)  Sr=  0.834704;  the  dashed  line
indicates the boundary of the RVE. The distance between the
beads,  made  dimensionless  with  respect  to  the  characteristic
size of the RVE, is L=0.25, whilst their radius is R=(1-L)/2.

Each   RVE   corresponds   to   the   deformed   current
configuration  B of a reference domain B0 constituted by
four identical  beads among which a suitable amount of
liquid water (the wetting phase) is trapped by capillary
forces. The amount of liquid (in volume) is prescribed by
the value of the degree of saturation; on the other hand its
spatial   distribution   is   a   function   of   the   local   wetting
properties of the beads. Here, for the sake of simplicity,
the same equilibrium Young contact angle is postulated at
each   loading   step,  moreover   the   interface  between   the
non­wetting   and   the   wetting   fluid   is   kept   constantly
circular,   during   the   evolution   process.   Tuning   the
parametrizing   value   of  Sr  provides   a­posteriori   the
relation   between   the   specific   interfacial   area   and   the
saturation  degree,  and  consequently  allows   to  compare
the results of the model with the benchmark experimental
data, relative to drainage­imbibition cycles.

A   suitable   homogenization   procedure,   which   stems
from the averaging operations summarized in [11], can be
developed   in   order   to   provide   a   motivation   of   the
conjectured relation between the average interfacial area
anw  and the macroscopic capillary pressure. The average
based   homogenization   scheme   implies   the   corrective
terms   in   equation   (6)  not   to  be   zero  only   if   the   fluid
trapped   among   the   beads   attains   the   boundary,   during
deformation. In this way the gradient of the liquid content

does not fade away. Thus in order to prove a functional
correlation between the gradient of Sr and the interfacial
area, all the micro­scale deformations which do not drive
the liquid to the boundary of the RVE are not taken into
account.

Considering   the   geometrical   data   reported   in   the
caption   of   Figure   2,   the   corrective   term   of   capillary
pressure,   introduced   in   equation   (6),   is   explicitly
calculated   using   the   above   mentioned   homogenization
techniques.

 

                   (a)                                           (b)                    

                    (c)                                           (d)

Figure 3. Admissible  distributions of the liquid phase within
different  RVEs,  obtained  as  the current  configurations of  the
reference shape of panel (a). The micro-scale displacement of
the beads is parametrized by the value of J,1 via its dependence
on the macro-scale second gradient of deformation. During the
deformation the saturation ratio is kept constant: Sr= 0.667298.

At   the   same   time   the   average   interfacial   area
consistent with the envisaged liquid distribution, can be
estimated   for   each  value  of  J,1.  A  contour  plot  of   the
constitutive law of Pc,  parametrized by the value of  anw,
can therefore be drawn, see Figure 5, which qualitatively
resembles  that  one traced  in Figure 11 of [10],  for  the
values   of   the   saturation   degree   which   have   been
considered in the present analysis. 

The   considered   deformation   and   flow   regimes   are
however totally different with respect to those simulated
in   [10].   As   a   matter   of   facts   they   are   driven   by   the
gradient of the Jacobian J, at different values of Sr, whilst
those ones of [10] are deduced simulating many scanning
loops   of   drainage   and   imbibition.   This   is   indeed   an
interesting point which corroborates the idea, introduced
in   [8],   of   resolving   the   hysteresis   of   the   capillary
pressure, between drainage and imbibition, introducing a
suitable micro­structural parameter, say anw, which tunes
the value of Pc for each value of Sr.

It is worth to underline that the considered micro­scale
analysis   stems   from   the   assumption   of   non­negligible
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strain   gradient,   which   in   fact   parametrizes   the
deformation process, even if only small strain of the solid
skeleton   are   considered.   If,   on   the   other   hand,   this
assumption were not valid, equation (6) whould abruptly
simplify   into   the   standard   constitutive   prescription   of
capillary pressure.

                     (a)                                         (b)                    

 

                    (c)                                           (d)

Figure 4. Admissible  distributions of  the liquid phase within
different  RVEs,  obtained as  the  current  configurations  of  the
reference shape on panels (a). The micro-scale displacement of
the beads is parametrized by the value of J,1 via its dependence
on the macro-scale second gradient of deformation. During the
deformation the saturation ratio is kept constant: Sr= 0.834704.

Figure  5. The  capillary  pressure Pc is   represented  as   a
function   of   the   saturation   ratio  Sr,   within   the   interval
delimited   by   the   considered   maximum   and   minimum
value of Sr and parametrized by the interfacial area anw. 

5 Conclusions

In this paper gradient theory of poromechanics endowed
with  phase   field  modeling  have  been  used   to  describe
partial  saturation.  The spatial  distribution of  saturation,
and strain, is regularized at phase coexistence, within the
non­uniform   fluid,   and   in   the   neighbors   of   possible
heterogeneities in the porous skeleton. To do this the free
energy of the overall porous medium has been regarded
as a function not only of strain and saturation but also on
their (Lagrangian) gradients. 
As   usual   in   gradient   theories,   the   governing   partial
differential  equations relative,   in   this  case,   to   the solid
skeleton   and   the   non­uniform   fluid   are   deduced   using
integration by parts twice, which implies the equations to
be, in general, of the fourth order. An enhanced version
of   classical  Richards'   equation  has  been  deduced   from
generalized Darcy's law, which in the considered regime
of partial saturation does not depend only on the capillary
pressure, but also on the so­called generalized chemical
potential. 

A novel constitutive characterization of the capillary
pressure is established and a micro­scale interpretation is
provided,   which   is   consistent   with   that   originally
formulated   in   [8].   A   comparison   with   experimental
results   also   confirms   that   the   contribution   to   capillary
pressure   due   to   the   saturation   gradient   allows   for
recovering   similar   effects   as   those   captured   by   the
average interfacial area.
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