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Abstract. The paper regards to physical model of the Activated Sludge Process, which is a part of the wastewater treatment. The 
aim of the study was to describe nitrogen transformation process and the demand of chemical fractions, involved in the ASP process. 
Moreover, the non-linear relationship between the flow of wastewater and the consumed electrical energy, used by the blowers, was 
determined. Such analyses are important from the economical and environmental point of view. Assuming that the total power does 
not change the blower is charging during a year an energy amount of approx. 613 MW. This illustrates in particular the scale of the 
demand for energy consumption in the biological aeration unit. The aim is to minimize the energy consumption through first building 
a model of ASP and then through optimization of the overall process by modifying chosen parameter in numerical simulations. In 
this paper example measurement and analysis results of nitrite and ammonium nitrogen concentrations in the aeration reactor and 
the active power consumed by blowers for the aeration process were presented. Further the ASP modeling procedure, which uses 
the Hammerstein-Wiener structure and example verification results were presented. Based on the achieved results it was stated that 
the developed set of methodologies may be used to improve and expand the overriding control system for system for wastewater 
treatment plant. 

1 Introduction 
1.1. The Activated Sludge Process 
The Activated Sludge Process (ASP) is a method used  
for biological wastewater treatment and is widely used  
in sewage treatment plants, for example [1]. Basic ASP 
process flow diagram is shown in Figure 1.  
The wastewater is brought into the biological reactor.  
The activation of wastewater process is based on providing 
oxygen to increase the number of microorganisms, 
responsible for contaminants reduction in the aeration 
tank. The activated sludge is then formed; it consists  
of flocks, mixes with new incoming wastewater and finally 
takes form of slurry. The flocks contain bacteria but also 
ciliates, flagellates, protozoa, nematodes, rotifers, larvae 
of insects, arachnids and mushrooms. Typical flock size 
varies from 50 µm to 100 µm. The sludge from  
the biological reactor is then transported to secondary 
settling tank (also called clarifier), in which the activated 
sludge is separated. A considerable part of the sludge  
is returned back to the reaction chamber (biological 
reactor) and the excessive part of the sludge is removed. 
The advantage of this method is its significant 
performance of harmful chemicals reduction. The main 
disadvantage is connected with high costs of electrical 
energy, which supply is needed for to assure a suitable 
amount of oxygen bowing into the aeration tank. 
Bacteria’s growth requires a continuous supply of energy. 
The heterotrophic bacteria require oxygen and organic 

carbon as a substrate. The autotrophic bacteria grow  
in oxygen environment using inorganic carbon substrate. 

 
Figure 1. The basic principle of Activated Sludge Process. 

1.2. Biological removal of nitrogen compounds 
Nitrogen is present in the wastewater in various forms,  
e.g. free form of ammonia, nitrates, nitrites, and different 
kinds of organic compounds. The total content of nitrogen 
is a sum of its particular components. Nitrogen is essential 
for biological growth, but in certain forms it is toxic and 
therefore, its reduction is desirable. Ammonia is toxic for 
aquatic organisms, among others, for fish. Nitrate presence 
causes excessive demand for oxygen. Nitrogen,  
as a nutrient, causes excessive growth of aquatic plants.  

There are two basic nitrogen transformation processes 
in the wastewater treatment plants: the nitrification and the 
denitrification. Both processes result in the removal  
of nitrogen from wastewater. Nitrification is the oxidation 
of ammonia and ammonium salts into nitrites and nitrates. 
This process is driven by nitrifying bacteria. Autotrophic 
nitrification takes place in the presence of oxygen  
at a concentration of at least 2 mg O2/dm3. Nitrification 
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reaction consists of two phases. In the first stage bacteria 
oxidize ammonium to nitrite: 

ସܪܰ
ା + 1.5ܱଶ → ܱܰଶ

ି + ଶܱܪ +  ା         (1)ܪ2

In the second stage nitrite ions are oxidized to nitrate  
by bacteria: 

ܱܰଶ
ି + 0.5ܱଶ → ܱܰଷ

ି                      (2) 

The condition of autotrophic nitrification occurrence is, 
beside the oxygen presence, the presence of coal,  
as an energy source for autotrophic bacteria (e.g. carbon 
dioxide) and the appropriate pH value (around 7.5).  

Denitrification is a reduction of nitrite to nitrogen.  
This process takes place under anaerobic conditions. 
Oxygen is present in the nitrite. Bacteria use it instead  
of dissolved oxygen. A simplified description  
of the denitrification reaction is as follows: 

2ܱܰଷ
ି + ାܪ2 → ଶܰ + ଶܱܪ + 2.5ܱଶ           (3) 

1.3. Modeling of the Activated Sludge Process 
The practical aim of our work is to develop a set  
of methodologies that will be used to improve and expand 
the precedent control system for wastewater treatment 
plant. The overriding control system provides 
measurement data to the subordinating control systems  
of the plant and replaces in this way human service  
for sewage treatment plants. Conducted works aim  
to determine the nature of changes, dependencies, trends 
and to make other observations of the wastewater 
parameter values, which characterize the treatment 
process. The study uses empirically acquired and digitally 
processed data in order to identify develop and verify  
a non-linear simulation model of the wastewater treatment 
plant. The hypothesis relates to confirmation  
the possibility of use of a physical model of wastewater 
treatment plant, based on Hammerstein-Wiener structure, 
to optimize the treatment process. According to the latest 
global trends, mathematical modeling has become  
an integral part of the design and operation of wastewater 
treatment systems, particularly those using the ASP [2]. 
Simulation of the activated sludge systems (experiment 
carried out on the model) proved to be an extremely useful 
tool for operators, designers and consultants, as well as  
for the scientific community. The use of mathematical 
models allows one for to examine in a short time and with 
low financial outlay of many technological solutions, and 
for simulation of events from outside the range of typical 
real system conditions.  

The most common physical model is the ASM1 
(Activated Sludge Model No.1), which was the first bio 
kinetic model of activated sludge. Implementations  
of the ASM1 in several popular simulation programs were 
compared in an exhaustive manner [3]. Examples  
of modified, supplemented or improved models of ASM1, 
known respectively as ASM2, ASM2d and ASM3  
are described in detail in [1]. In addition to the ASM family 
models, in which the mass balance is based on the COD, 
there are also models that use the mass balance  
of the BOD, for example the ASAL models [4]. Models 
describing in detail the metabolism of organisms involved 
in the pollutants decomposition, which include, among 

others, TUDP model are described in [5-6]. The activated 
sludge system model is composed not only from  
the activated sludge (biochemical model, e.g. ASM), but 
also it includes models of other processes, in particular:  
he sedimentation model (settler model) and the mass 
transfer model (hydraulic model, aeration system model). 
Most of the simulation models, described in the literature, 
were carried out for the biological purification stage  
and thus the system consisted of the activated sludge 
reactor and the secondary sedimentation/settling tank [7]. 
The newest trends in modeling of wastewater treatment 
processes, however, seek to include also other system 
parts/processes, instead of only the specified area,  
in the multiphysical model. In such as a manner the whole 
wastewater treatment plant constitutes the object under 
study and the designed model includes additionally the 
sewage, sewage treatment plant and the receiver [8].  
A factor impeding modeling of the technological sequence 
of the entire wastewater treatment plant lies in the fact that 
not all models of wastewater or sludge treatment processes 
have a common set of variables. For example one may 
consider a combination of the ASM1 model with a settler 
model. Such a hybrid model, however, involves  
the concentration of slurries from the settler as state 
variable, but this value is not present in the activate sludge 
process. This problem might be solved by using a complex 
variable, corresponding to the concentration calculated 
from the respective ASM1variables, which is, however, 
not a state variable. Another example of biochemical 
transformations model, which uses a different set  
of variables, is the ASM model and the methane 
fermentation - ADM1 (Anaerobic Digestion Model No.1) 
model.  

The most important part prior modeling is collection  
of measurement data, which allows the model  
to be accurately calibrated and validated for all conditions. 
The modern modeling approaches and algorithms  
are relatively easy to understand for engineering 
application purposes. They enable to model the wastewater 
treatment facilities and to calibrate them, which provide 
then accurate predictions of the system behavior under 
different operational conditions. Nowadays in every 
facility there are specialized measurement and SCADA 
devices installed for registering and collection of hydraulic 
and technological parameters. Given sufficient data,  
a modeler can accurately model the activated-sludge 
process using different models. 

Developments in the field of modeling of sludge 
treatment processes, including both dynamic and steady-
state conditions, are well presented in [9]. Based  
on a literature review Author enhances the importance  
of computer modeling of activated-sludge process during 
design of new and optimization of existing wastewater 
plants. Readers who are interested in other interesting 
research results dealing with modeling of activated sludge 
tanks are referred [10-14]. 

In this paper chosen analysis result of nitrate  
and ammonium nitrogen and blower active power values, 
measured in experiments, are presented. Furthermore,  
the ASP modeling procedure and results of this model 
verification are described.  
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2 Experimental results analysis 
2.1. Analysis results of nitrate nitrogen 
concentration 
Nitrate nitrogen NO3-N is next to nitrite nitrogen NO2-N 
the main product of decomposition of ammonium NH4-N. 
This value was registered during measurements by using 
an ion-selective probe from Hach-Lange. The measuring 
sensor was placed inside the oxygen reactor. Under normal 
operational conditions, the gathered data should indicate 
significantly lower values in the effluent as compared  
to these in the influent of the reactor.  

 
Figure 2. Time course of the nitrate nitrogen NO3-N 
concentration. 

In Figure 2 example time course of the nitrate nitrogen 
measured within a week is presented. A periodical pattern 
can be recognized: the values are generally lower at night 
and higher at mornings. The nitrate nitrogen concentration 
varies in the range from 4 to 12.5 mg/dm3. The average 
value µ equals 8 mg/dm3. 

 
Figure 3. Probability density function calculated over the 
nitrate nitrogen concentration gathered during the measurement 
campaign. 

In Figure 3 probability density function calculated over 
the nitrate nitrogen concentration gathered during  
the measurement campaign is presented. The probability 
density function depicts no uniform mode. Variability  
in the entire interval is relatively equal. 

In Figure 4 power spectrum density calculated over  
the nitrate nitrogen concentration gathered during  
the measurement campaign is presented. Power spectrum 
depicts several periodicity components of the sludge what 
is indicated by picks in the spectrum. The most significant 
value is the fundamental frequency component equal  
to 1*10e-5, the conversion of 24 hours.  

In Figure 5 the auto covariance function calculated 
over the nitrate nitrogen concentration gathered during the 
measurement campaign is presented. It indicates  

a stochastic component and significant own variances  
for time delays, which are multiples of 24h day. 

 
Figure 4. Power spectrum density calculated over the nitrate 
nitrogen concentration gathered during the measurement 
campaign. 

 
Figure. 5. Autocovariance function calculated over the nitrate 
nitrogen concentration gathered during the measurement 
campaign. 

Correspondent result was obtained by examining 
variation of the frequency structures over time, what  
is illustrated in Figure 6. The scale graph depicts  
no significant harmonics in the gathered data. 

 
Figure 6. Scalegraph calculated over the nitrate nitrogen 
concentration gathered during the measurement campaign.  

2.2. Analysis results of ammonia nitrogen 
concentration 
The concentration of ammonium nitrogen NH4-N was 
measured using two probes: the Hach-Lange  
and the Endress-Hauser sensors. Both sensors were placed 
inside the oxygen reactor. In Figure 7 time course  
of the ammonium nitrogen concentration measured with 
two different probes is presented. A periodical pattern can 
be recognized. But in contrast to the nitrate concentration, 
ammonium nitrogen indicates higher values  
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in the afternoons and at nights and lower at mornings. 
Values measured by the Hach-Lange probe were slightly 
lower as compared with data registered by the Endress-
Hauser probe. The ammonia nitrogen concentration varies 
in the range from 0.8 to 19.5 mg/dm3. The average values 
µ=8 mg/dm3 for the Hach-Lange and µ=9 mg/dm3  

for the Endress-Hauser probes. The standard deviation 
equals 4.09 for the Hach-Lange probe, and it is approx. 
16% higher for the Endress-Hauser probe. In further 
studies the Hach-Lange probe was applied. 

 
Figure. 7. Time course of the ammonium nitrogen NH4-N 
concentration measured with two different probes. 

In Figure 8 probability density function calculated over 
the ammonium nitrogen concentration gathered during the 
measurement campaign by the Hach-Lange probe  
is presented. The highest probability occurred  
for the concentration equal to about 14 mg/dm3.  
The distribution has a fuzzy character and values  
are within the range from 0 to 16 mg/dm3. 

 
Figure 8. Probability density function calculated over the 
ammonium nitrogen concentration gathered during the 
measurement campaign by the Hach-Lange probe. 

 
Figure 9. Power spectrum density calculated over the 
ammonium nitrogen concentration gathered during the 
measurement campaign by the Hach-Lange probe. 

In Figure 9 power spectrum density calculated over the 
ammonium nitrogen concentration gathered during the 
measurement campaign by the Hach-Lange probe  

is presented. The spectrum depicts periodicity  
of the sludge what is indicated by a pick near the 1*10e-5 
frequency value. Certain importance is give also  
to the second harmonic component.  

 In Figure 10 auto covariance function calculated over 
the ammonium nitrogen concentration gathered during the 
measurement campaign by the Hach-Lange probe. Here  
a high value of the covariance of time delay, which is equal 
to 24 h, and for the subsequent multiples, is depicted. 

 
Figure 10. Autocovariance function calculated over the 
ammonium nitrogen concentration gathered during the 
measurement campaign by the Hach-Lange probe. 

In Figure 11 scale graph calculated over  
the ammonium nitrogen concentration gathered during  
the measurement campaign by the Hach-Lange probe  
is presented. One can recognize similar periodic 
components as compared to the nitrate nitrogen 
concentration. For the entire duration of measurement  
the 24h daily component does not change its energy. 
Wavelet coefficients for the scale corresponding  
to the 1/(12h) frequency occur sporadically.  

 
Figure 11. Scalegraph calculated over the ammonium nitrogen 
concentration. 

2.3 Analysis results of the blower active power 
The next parameter analyzed was the active power applied 
for three different blowers that are installed in the reactor. 
The time courses for the various blowers are shown  
in Figure 12. The total value of blowers active power  
is presented in Figure 13. The average value of active 
power µ was equal to approx. 70 kW. 

Additional the probability density function was 
calculated over the active power values (Figure 14), which 
was approximated by using normal distribution function 
achieving very high fit (Pearson determination coefficient 
R2=0,89).  
Calculated standard deviation value depicts that during the 
entire measurement campaign the blowers have had 
relatively small active power, which was equal to 70 kW. 
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The momentary power reaches the maximum value  
of 120 kW. 

 
Figure 12. Time course of the active power applied for 
particular blowers. 

 
Figure 13. Time course of the total blower active power. 

Assuming that the total power does not change during 
the year blowers charge an energy amount of approx. 613 
MW. This illustrates in particular the scale of the demand 
for energy consumption in the biological aeration unit. 

 
Figure 14. Probability density function calculated over  
the active power values. The solid line corresponds  
to  approximation estimated by means of normal distribution. 

3 Non-linear modeling of chosen 
processes involved in the ASP 
The study was carried out to identify certain processes 
related to waste water treatment. The purpose  
of these studies is an alternative description  
of the treatment of nitrogen and chemical fractions  
of demand. Moreover, the aim of research is to determine 
the non-linear relation between the flow of sewage  
and electric energy consumed. The process is treated  
as a Single Input Single Output (SISO). The identification 
was carried out using Hammerstein-Wiener model.  
The study was conducted using MATLAB Toolbox 
System Identification Toolbox. In the studies two sets  
of data were applied: one for identification and one  

for validation. Weekly measurement data were used for the 
modeling process. The available waveforms were divided 
in two half: one half - 3.5 day, was used for identification 
of the model, as the learning sequence (LS); the remaining 
3.5 days was used for testing purposes, as a test sequence 
(TS). All data sets applied in the study consisted of 336 
measuring points, i.e. 84 hours with four samples per hour. 
In a series of simulations an optimal nonlinearity  
on the input and output of the model were determined. 
Also an appropriate structure of the linear dynamic 
member was selected. For the estimation of non-linear 
members a piecewise-linear model was applied. Three 
different criteria for evaluation of the model quality were 
used: 

1. C1: Best fit for learning sequence FIT(LS), 
2. C2: Best fit for test sequence FIT(TS), 
3. C3: Best fit for the sum over the learning and test 

sequences FIT(LS) + FIT(TS). 

3.1. Non-linear process identification of nitrate 
nitrogen SNO production in the aerobic reactor 
In the first step the model for nitrate nitrogen (SNO)  
was identified and verified. The input of the SISO model 
was the outflow of sewage. The output variable was  
the course of SNO. The sampling period for both variables 
was 15 min. Both variables were changing over time.  
A genetic algorithm was used for to determine five 
parameter values, which were as follows: 
 number of zeros (plus 1) – P1, 
 number of poles – P2, 
 input delay – P3, 
 number of piecewise-linear estimators of the input non-

linearity (plus 1) – P4, 
 number of piecewise-linear estimators of the output 

non-linearity (plus 1) – P5. 
For model goodness indication, the following equation 

was applied: 

ܶܫܨ = 100 ⋅ ቀ1 − ௡௢௥௠(௒ି஼)

௡௢௥௠(஼ି஼̅)
ቁ [%]            (4) 

Where: Y is the model response, C is the measured data. 
This value is given in percent, therefore the higher  
the result, the better the fit. 

The summary results of studies, which aimed 
determination of the best structure for the different criteria 
analyzed, are listed in Table 1. All the structures were 
found to have the same number of zeros P1=3, the same 
number poles P2=7 in the dynamic part and the same 
delay, which was equal to one step P3=1. Differences were 
calculated for the number of piecewise-linear estimators  
of the input and output nonlinearities. 

Table 1. Comparison of the best fit Hammerstein-Wiener 
structures found for the three considered criteria; output – the 

nitrate nitrogen SNO concentration, input – sludge flow. 

Crit. P1 P2 P3 P4 P5 
FIT(LS

) 
[%] 

FIT(TS) 
[%] 

C1 3 7 1 4 4 87.55 68.27 
C2 3 7 1 3 2 78.33 76.19 
C3 3 7 1 1 3 83.48 74.80 
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When used as criterion the best fit of learning sequence  
(no. 1), the optimal structure consisted of 5 piecewise-
linear (P4x=4+1)in both nonlinearity estimators. 

An example time course of nitrate nitrogen model 
identified using the learning sequence is shown in Figure 
15. The model relatively properly reproduces the measured 
nitrate nitrogen values adjusting to changes  
in the following days. Negligible mismatches occur only 
at the hourly/minutely variability level of the data. 

 
Figure 15. Timing charts of the Hammerstein-Wiener model  
in response to nitrate nitrogen data contained in the LS (first 84 
hours); Identification according to the criterion C1. 

The residuals time course of the Hammerstein-Wiener 
model in response to learning sequence, when 
identification considered the criterion C1, is presented  
in Figure 16. The values are in the range from -0.8  
to 1mg/dm3.The stochastic nature of the residuals within 
time course, confirms that the model has been selected 
properly. 

 
Figure 16. The residuals of the Hammerstein-Wiener model in 
response to LS; Identification according to the criterion C1. 

3.2. Non-linear process identification  
of ammonium nitrogen NH4-N production  
in the aerobic reactor 
We then consider the process, in which the wastewater 
outflow was given as the input of the SISO system, and the 
discharged ammonium nitrogen concentration (NH4-N) 
was assumed as output. The sampling period for both 
datasets was equal to 15 min. Just as for the nitrate nitrogen 
identification, during these studies it were used two 
datasets: one for the identification and second for the 
validation. Also the same genetic algorithm, the same 
number of parameters of the objective function, the same 
goodness indicator and the same criteria were applied.  
The summary of the results obtained are listed in Table 2. 

The optimal model structure, for which the best 
matching value was calculated, occurred for identification 
with the LS (criterion C1). It had a significant number  

of zeros P1=7 and poles P2=7. It had respectively 2 (P4) 
and 6 (P5) points of inflection of the input and output non-
linearity estimators. It was found that criteria C2 and C3 
meet the same structure with two zeros and three poles  
in the dynamic part. The static nonlinearity input estimator 
had 6 piecewise-linear (P5=5+1), while the output 
nonlinearity estimator included four piecewise-linear. 

Table 2. Comparison of the best fit Hammerstein-Wiener 
structures found for the three considered criteria; output – the 

ammonium nitrogen concentration N-NH4, input – sludge flow. 

Crit. P1 P2 P3 P4 P5 FIT(LS) 
[%] 

FIT(TS) 
[%] 

C1 7 7 1 2 6 85.46 55.69 
C2 2 3 1 5 3 81.18 62.17 

C3 2 3 1 5 3 81.18 62.17 

An example time course of ammonium nitrogen model 
identified using the LS is shown in Figure 17.  
The residuals (Figure 18) are in the range of from -2.7  
to 1.5 mg/dm3. Stochastic nature of the residuals time 
course confirms that the model has been selected properly. 

 
Figure 17. Time course of the Hammerstein-Wiener model  
in response to ammonium nitrogen data contained in the LS 
(first 84 hours); Identification according to the criterion C3. 

 
Figure 18. The residuals of the Hammerstein-Wiener model  
in response to LS; Identification according to the criterion C3. 

3.3. Non-linear process identification of active 
power AP used for in the aeration 
Then, an attempt to determine the non-linear relationship 
between the amount of effluent and environmental 
parameters: temperature, pressure and active power 
consumption was made. The model inputs were: sludge 
outflow, with sampling period equal to 15 min, 
temperature and pressure, with sampling period equal  
to 60 min. The model output was the total active power, 
which constitutes the sum of active power values measured 
on three blower devices mounted for aeration in the 
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biological reactor. All datasets were interpolated in order 
to obtain a uniform sampling rate (1/4 h -15 min).  
As in the previous studies, two sets of data, 84 hours - 
measuring period, were used for the model identification 
and validation. A genetic algorithm was used  
for to determine 11 variables: P1 for sewage outflow: P1S, 
P1 for Temperature: P1T, P1 for Pressure: P1P, P2  
for sewage outflow: P2S, P2 for Temperature: P2T, P2  
for Pressure: P2P, P3 for sewage outflow: P3S, P3  
for Temperature: P3T, P3 for Pressure: P3P, P4 and P5. 

For estimation of model goodness eq. (4) was applied. 
Three different criteria were used for evaluation  
of the model quality, when checking for the best fit within 
the learning, testing and the total sum of this both values. 
The final results of studies aiming determination  
of the best structure for the different criteria are listed  
in Table 3. The best fitted structure was meet  
for the learning sequence (criterion C1).  

Table 3. Comparison of the best fit Hammerstein-Wiener 
structures found for the three considered criteria; output –the 

active power consumed by the blower. 

Crit. P1 P2 P3 P4 P5 FIT(LS) 
[%] 

FIT(TS) 
[%] 

C1 3 2 1 2 1 12 1 
C2 3 2 1 2 1 12 2 
C3 3 1 1 2 2 12 3 

An example time course of active power model 
identified using the test sequence is shown in Figure 19. 
The model relatively correctly provides the active power 
values when based on the given input data. The residuals 
(Figure 20) are in the range of from -8 to 10 kW. They 
indicate a single error in the measurement data around  
the 50th hour of measurement. 

 
Figure 19. Timing charts of the Hammerstein-Wiener model  
in response to active power data contained in the LS (first 84 
hours); Identification according to the criterion C2. 

Summing up the results it is to conclude that  
the developed ASP process model using the Hammerstein-
Wiener structure allows conducting simulation studies, 
which concern determination of the amount of energy 
consumption. The electrical energy is used by the blower 
in the aerobic reactor of a wastewater treatment plant  
for aeration. Presented results confirm the efficacy  
of the developed methodology for application to carry out 
simulation studies aimed at optimization of the ASP 
process. 

 
Figure 20. The residuals of the Hammerstein-Wiener model in 
response to LS; Identification according to the criterion C2. 

4 Conclusions  
Modeling results of three selected processes occurring  
in the aeration reactor of wastewater treatment plant  
are presented in this paper. The Hammerstein-Wiener 
structure was applied for identification of the process  
of nitrate nitrogen SNO production, the process  
of ammonium nitrogen N-NH4production and the process 
of active power supply AP during aeration. For each  
of the models identified three criteria were applied: 

C1: Best fit for the learning sequence FIT(LS), 
C2: Best fit for the test sequence FIT(TS), 
C3: Best fit for the sum of the learning and test 
sequences FIT (LS)+FIT(TS). 
Analysis of the results allowed for to define  

the following conclusions: 
1. All the models received reproduce relatively correctly 

the actual measurements. The best fit for the SNO model 
was found using the criterion C1 for the LS, which  
was equal to 87.55%. The best fit for the N-NH4 model 
was found for the criterion C1 for the LS, which was 
equal to 85.46%. The best fit for the AP model was 
found by using the criterion C1 within the LS,  
and which equaled 87.55%. The best fit for the TS was 
obtained for criterion C2, for all identified models.  

2. Residuals were differently for each of the models.  
For criterion C1, residuals were stochastic and were not 
correlated with the time courses, by which it can  
be concluded that the chosen models are appropriate. 
For other criteria residual values ranged from -4 to 5 
mg/dm3 for both nitrogen models and from -15 to +12 
kW for the active power model.  

3. The achieved results confirmed the hypothesis that  
it is possible to use a physical model of the ASP based 
on Hammerstein-Wiener structure for to optimize  
the wastewater treatment process. 
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