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Abstract. A harvesting fishery model is proposed to analyze the effects of the presence of red devil fish 
population, as a predator in an ecosystem. In this paper, we consider an ecological model of three species by 
taking into account two competing species and presence of a predator (red devil), the third species, which 
incorporates the harvesting efforts of each fish species. The stability of the dynamical system is discussed 
and the existence of biological and bionomic equilibrium is examined. The optimal harvest policy is studied 
and the solution is derived in the equilibrium case applying Pontryagin's maximal principle. The simulation 
results is presented to simulate the dynamical behavior of the model and show that the optimal 
equilibrium solution is globally asymptotically stable. The results show that the optimal harvesting 
effort is obtained regarding to bionomic and biological equilibrium. 

1 Introduction  
Introducing red devil fish species in freshwater 
ecosystems has threatened the presence of commercial 
fish (such as, tilapia and goldfish) in the habitats.  In the 
freshwater ecosystems, red devil (Amphilophus 
Labiatus) growth highly and abundantly. Red devil is as 
one of the major threats to global biodiversity [1, 2]. The 
red devil species introduced in the ecosystems through 
spreading the seeds of the commercial fish. The red devil 
species is from Nicaraguan lakes. The presence of a red 
devil fish in the ecosystems has become the leading 
threat of the survival of other fish in the habitats. Red 
devil has preyed on other commercial fish, such as carp 
and tilapia. Red devil fish is a type of predator that 
interferes the survival of other fish in which as the 
predator, red devil fish has low commercial value.  

A number of the investigations regarding to 
fisheries resources have been conducted. The fishery 
model of two competing species was addressed by Clark 
et al. to discuss the aspect bionomics and the policy of 
optimal harvesting policy [2]. The combined harvesting 
of two competing species from the aspect of bionomic 
was also studied and discussed for the optimal 
equilibrium policy [3-7].  

Das et al. [8] and Chaudhuri et al. [9] proposed the 
model one prey – one predator with combined 
harvesting. They analysed the dynamical behaviour of 
the model and the optimal harvesting policy. They 
assumed that the growth of both prey and predator are 
formulated in the logistic terms. Das et al. [8] used the 
functional response of predator that it is limited by 
density of prey.  Rao et al. [10] investigated analytically 
the dynamical behaviour of the model for three species 

with one prey and two competing predators. They also 
discussed the policy of optimal harvesting.  .  

Kar et al. [11] analyzed a harvesting model for two 
competing species taking into account the presence of a 
predator species which feeds on the two competing 
species, as the third species which was not harvested. 
They also analyzed bionomic equilibrium solution and 
the policy of optimal harvesting. 

In this paper, we propose and analyze an ecological 
model of multispecies harvesting of two competing prey 
species and a predator species. We consider a combined 
harvest effort that imposes the exploitation of each 
species. The growth model of each species is modeled by 
logistics terms and we consider that the functional 
response of both competitor and predator of other 
species is assumed in bilinear term. The existence of the 
possible equilibrium states of the model and the stability 
of nontrivial equilibrium state by using a Lyapunov 
function is discussed. Next, we discuss the possibilities 
of the existence of a bionomic equilibrium. The optimal 
harvesting policy is studied and the optimal solution is 
derived in the nontrivial equilibrium case by using 
Pontryagin's maximum principle. Finally, some 
numerical examples are discussed. 

2 Model formulation 
We consider an aquatic ecosystem, there are two prey 
species of fish that competes each other for using a 
common resource. In the presence of a red devil fish, an 
invasive species (as predator) threat the survival of these 
prey species. Besides competing for the use of same 
resources, red devil fish also eats the small other fish. All 
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these species are imposed continuously harvesting. We 
propose the logistic growth function for both two prey 
species and the predator (that is, the population of each 
species compete for the same resource), in addition to 
the third species increases due to in the presence of prey 
populations. The model equations for three species in 
which two competing prey species and a predator species 
with harvesting on all species is given by the following,   
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1 1 1 2 1 2 1 3 1 3 1 1

1

1
d x x
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d t K
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where
1 2( ), ( )x t x t  and 

3 ( )x t  are the biomass densities 
of the first prey, the second prey and predator 
populations with the natural growth rates 

1 2,r r  and 
3r  

respectively. The parameters 
1 2,K K  and 

3K  are the 
carrying capacities of the first prey, the second prey and 
predator populations, respectively. Parameter 

1 2  is rate 
of decrease of the  first prey due to the competition with 
the second prey, 

1 3  is rate of decrease of the  first prey 

due to inhibition by the predator, 2 1  is rate of decrease 
of the  second prey due to the competition with the first 
prey, 2 3  is rate of decrease of the  second prey due to 

inhibition by the predator, 3 1  is rate of increase of the  

predator due to successful attacks on the first prey, 3 2  
is rate of increase of the  predator due to successful 
attacks on the second prey, iq  for 1, 2 , 3i   are catch 
ability coefficient of the first prey, the second prey and 
predator species respectively. E  is the harvesting effort 
and , 1, 2 , 3i iq E x i   are the catch-rate functions based 
on the catch-per-unit-effort hypothesis. In the analysis of 
the system, we assume that 0i ir q E   for 1, 2 , 3 .i   

3 Model analysis 

In the section, we analyze the existence and the stability 
of equilibria.  

3.1 Existence of equilibrium 

We determine the conditions for the existence of the 
equilibrium points of the system (1). By equating the 
right hand side of the system (1) to zero, we obtain the 
equilibrium states. The possible equilibrium states are 
given as follows, 

0P : The state of all washed out   * * *
1 2 30 ; 0 ; 0x x x   . 

1P :The state in which  only the predator survives,  two 
prey species are washed out. The equilibrium state is 

 3 3 3* * *
1 2 3

3

0 ; 0 ; .
K r q E

x x x
r


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2P : The state in which the first prey and predator species 
survive and the second prey species extinct out, is given 
by 
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3P : The state in which the second prey and predator 
exist, while the first prey extinct out. It is given by 
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4P : The state in which both the first and the second prey 
exist, while the predator extinct, It is given by 
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This state exists, when 
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, ,   
r r
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K K

      

1 2
2 1 1 2

1 2

r r
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5P : The co-existence state, the state in which two prey 
and predator species exists. The equilibrium state is 
given by,  
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where,  
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3.2 The stability of the equilibrium state 

We analyze the global stability of the system (1) by 
constructing a suitable Lyapunov function. The global 
stability of the system (1) for the co-existence 
equilibrium state is given in the following theorem. 
Theorem 3.1: The equilibrium state * * *

5 1 2 3( , , )P x x x  is 
globally asymptotically stable if, 
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Proof:  To examine the globally stability of the system 
(1), we define a Lyapunov function 
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We see that V  is definite positive. The time derivative 
of V  along the solutions of the system (1), is given by, 

** *
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.
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After simplifying, 
d V

d t
 can be rewritten as,    

                      d V

d t
  X A X ,           (2) 

where,  
* * *
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We observe that 0
d V

d t
  if the matrix A  is definite 

positive. The matrix A is definite positive if, 

   3 1 1 3 3 2 2 3

1 1
0 , 0

2 2
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 
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4 0
r r

K K
    . So, we conclude that the co-

existence equilibrium is globally asymptotically stable, if 

1 3 3 1  , 23 32    and    
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4
r r

K K
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This completes the proof.  

3.3 Bionomic equilibrium 

The concept of bionomic equilibrium is the concepts that 
are related to the biological and economic equilibrium. 
The biological equilibrium is derived from the right hand 
sides of the system (1) equal zero. The economic 
equilibrium is obtained by equaling the total revenue that 
is obtained by selling the harvested biomass with the 
total needed efforts for harvesting. 
 Let c  is the fishing cost per unit effort, ip  for 

1, 2 , 3i   are the price per unit biomass of the first, the 
second and the third species respectively. The net 
economic revenue at any time t  is given by 

 1 1 1 2 2 2 3 3 3 .R p q x p q x p q x c E       (3) 
We can obtain the bionomic equilibrium 

 1 2 3, , ,b b bP x x x E  that are given in the following 
equations,   
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Eliminating E  from (4), we obtain the nontrivial 
biological equilibrium.  The possibility of the bionomic 
equilibrium is determined in the following cases.  
Case I. When

1 1 1 2 2 2 3 3 3p q x p q x p q x c   , the 
fishing cost per unit effort exceeds the total revenue, so 
the biomass is not harvested. 
 Case II. When

1 1 1 2 2 2 3 3 3p q x p q x p q x c   , the 
fishing cost per unit effort is less than the total revenue, 
so the biomass can be harvested. The economic 
equilibrium is given by 

1 1 1 2 2 2 3 3 3 0R p q x p q x p q x c       (5) 
We refer to (4) as the economic equilibrium point. The 
bionomic solution 

1 2 3( , , )b b bx x x  is obtained by solving 
both the equations (4) and (5) simultaneously.  

3.4 Optimal harvesting policy  

Our objective is to maximize the present revenue value 
J  of a continuous time that is given by 

   1 1 1 2 2 2 3 3 3
0

e tJ p q x p q x p q x c E t d t


     (6) 

where   represents the instantaneous annual rate of 
discount. In this problem, we maximize J  subject to the 
state equations (1) by applying Pontryagin’s maximal 
principle [6, 11]. The value of the control variable ( )E t  

is between 0  and m a xE , so that the control function 

( )V t  [0 , ]m a xE . The Hamiltonian of the problem is  

 1 1 1 2 2 2 3 3 3e tH p q x p q x p q x c E   

1
1 1 1 1 2 1 2 1 3 1 3 1 1

1

1
x

r x x x x x q E x
K

  
  

       
  

 

2
2 2 2 2 1 1 2 2 3 2 3 2 2

2

1
x

r x x x x x q E x
K

  
  

       
  

  (6) 

3
3 3 3 3 1 1 3 3 2 2 3 3 3

3

1
x

r x x x x x q E x
K

  
  

       
  

 

where , 1, 2 , 3i i   are the adjoint variables. 
By using Pontryagin's maximal principle, we write 

the adjoint equations regarding to optimal equilibrium 

solution as i

i

d H

d t x

 
 


 for 1, 2 , 3 .i   We obtain 

adjoint equations as follows, 
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Next, we consider the state variables, 
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constants. Eliminating 
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3  from (8) and (10), we 

find the differential equation in 
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The solution of the equation (10) is  

  31 2 2
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t C C C
N
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where  , 1, 2 , 3iC i   are arbitrary constants, and 

, 1, 2 , 3im i   are the roots of the equations 
3 2

3 2 1 0 0a m a m a m a    , and 2
0 1 2N a a a     

3
3 0a   . It is clear from the equation (11) that 

2 ( )t  
is bounded if and only if 0, 1, 2 , 3im i   or 

, 1, 2 , 3iC i    identically equal zero. It is difficult to 
identify whether 0, 1, 2 , 3im i  .  For this, we assume 

that 0, 1, 2 , 3iC i  , then 2
2 ( ) tA

t e
N

  . By a similar 
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process, we get 1
1 ( ) tA

t e
N

   and 3
3 ( ) tA

t e
N

   

where 

3 2
1 2 3 3 1 2 1 2 3 2 1 3 1 2 2 2

3 2

r r
A x x x q p E

K K
     

    
       
    

  2 3 32
3 2 2 3 2 3 2 3 1 1

2 3 2 3

r r rr
x x x x q p E

K K K K
   

  
     
   

 

      2
3 2 2 1 3 1 2 3 3 1 3 3 3

2

r
x x x q p E

K
    

  
    

  

  

      2 2
3 1 2 2 1 12 q p E q p E    , and 

2
3 1 3 1 2 2 3 1 2 1 3 1 1 1

2

r
A x x x q p E

K
    

  
     

  

  

, 

1
2 3 2 1 1 3 1 2 2 3 2 2 2

1

r
x x x q p E

K
    

  
    

  

 

21 2 2 1
1 2 2 1 1 2 2 1 3 3

1 2 2 1

r r r r
x x x x q p E

K K K K
    

  
     

  

 

We observe that the shadow prices ( ) , 1, 2 , 3t
i t e i   of  

each fish species is bounded when t    and we get 

( )  c o n s ta n t ,  fo r  1, 2 , 3 .t i
i

A
t e i

N
     

We maximize the Hamiltonian in the equation (7)  for 
0 .m a xE E  We consider that the optimal equilibrium 

does not occur either at 0E   or 
m a xE E . There is a 

singular control that satisfies the equation,  

 1 1 1 2 2 2 3 3 3e tH
p q x p q x p q x c

E


    


  

         
1 1 1 2 2 2 3 3 3 0 ,q x q x q x        (13) 

We conclude that the total harvesting cost per unit effort 
equals to the discounted value of the future profit at the 
steady state [5, 11]. By eliminating parameters 1 , 2  

and 3  into equation (11), we obtain  

31 2
1 1 1 2 2 2 3 3 3

AA A
q x p q x p q x p c

N N N

    
          

     

  (14) 

The optimal equilibrium solution 1 2, ,x x  , and 3x   can 
be solved simultaneously from (4) and (14) for a given 

value .  We observe that if    , we have 0 .iA

N
  It  

implies that 
1 1 1 2 2 2 3 3 3p q x p q x p q x c     . Thus, 

we have 
1 2 3( , , ), ) 0R x x x E    . It shows that the net 

economic revenue is fully lost when the discount rate is 
infinite. This conclusion is also supported by Kar et al. 
[11] for the combined harvesting of two competing 
species, while there is no harvesting for predator.  
 
 
 

4 Numerical simulations 
In this section, we present the simulation results to   
illustrate the dynamical of the model. We pick up for 
some parameters value from with 

1 2 .09,r   

2 2 .0 7 ,r  3 2 .1,  r  1 2 0 .0 0 1,    2 1 0 .0 0 1, 

1 3 0 .0 1,  2 3 0 .0 1,    3 1 0 .0 1,   
3 2 0 .0 1,   

1 0 .0 3,q  2 0 .0 3,q  3 3,0 .0q 
1 5,p  2 5,p 

3 2 ,p  5 0C   and 0 , 0 5 .   In our optimal problem, 
we have an equilibrium solution that satisfies the 
necessary conditions of the maximum principle. For the 
parameter values as is given, we find that both the 
biological equilibrium 

5 (3 3, 3 2 ,1 1 6 )P  and the bionomic 
equilibrium (3 9 , 3 8 ,1 3 7 )R  exist and achieve to the 
optimal equilibrium solution. We find that the optimal 
harvesting effort is 5 .6E   units, regarding to the 
optimal equilibrium (3 6 , 3 5 ,1 2 6 ) . The simulations are 
presented in the following figures.  

 
Fig. 1. Graph of the populations against time with initial 
conditions 

1 2 31 2 0,  1 0 0,  5 0x x x     

 
Fig. 2 Graph of the populations corresponding to the optimal 
harvesting effort 5 .6E   units, with different initial 
conditions.  
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In figure 1 and figure 2 shows that the trajectories of 
the solutions close to the optimal equilibrium 

(3 6 , 3 5 ,1 2 8 )P .  It indicates that the optimal equilibrium 
solution is globally asymptotically stable. 

5 Conclusion  
An ecological model was proposed and analysed to study 
the dynamics for two competing prey species and one 
invasive species (as predator) in an aquatic habitat.  In 
this paper, we have attempted to study the effects of 
harvesting of two competing prey species and one 
predator species, in which predator species eats other 
two prey species and also the predator competes for 
using the same resources among this species. The 
existence of the possible steady states and bionomic 
equilibrium of the system have been studied. The 
globally stability of the system in co-existent state is 
examined by using Lyapunov function.  

The optimal harvesting problem was addressed to 
obtain the optimal equilibrium solution. It is shown that 
the shadow prices of each biomass remain constant over 
time, so the boundedness and positivity condition are 
satisfied. An ecological model is developed from one 
prey-one predator model, in which the growth of each 
population is formulated in logistics term for among the 
same species. For interaction in other species is proposed 
in bilinear term. In the next research, will be developed 
for interaction of predator and prey species based on the 
limited density of prey population, in which it is more 
reasonable in an ecological system.  
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