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Abstract. Some factors can affect the consequences of oil pipeline accident and their effects should be
analyzed to improve emergency preparation and emergency response. Although there are some qualitative

analysis models of risk factors’ effects, the quantitative analysis model still should be researched. In this
study, we introduce a Bayesian network (BN) model of risk factors’ effects analysis in an oil pipeline
accident case that happened in China. The incident evolution diagram is built to identify the risk factors.

And the BN model is built based on the deployment rule for factor nodes in BN and the expert knowledge
by Dempster-Shafer evidence theory. Then the probabilities of incident consequences and risk factors’

effects can be calculated. The most likely consequences given by this model are consilient with the case.
Meanwhile, the quantitative estimations of risk factors’ effects may provide a theoretical basis to take
optimal risk treatment measures for oil pipeline management, which can be used in emergency preparation

and emergency response.

1 Introductions

Oil pipelines are used more and more widely and their
accidents may result in serious consequences. Several
types of factors, including hazard property, environment
condition, hazard-affected carriers and emergency
response, can affect oil pipelines accident consequences.
The effect of these factors should be analyzed to identify
their importance. And furthermore, the optimal risk
treatment plan which can reduce the probability and
consequences of an accident, can be developed based on
the effect analysis.

Researchers have developed some models to analyze
the effect of risk factors. Some diagram methods,
including fault tree models, event tree models and bow-
tie models, are effective to analyze these factors
qualitatively. The risk factors can be identified by these
diagram methods but it’s difficult for quantitative
analysis. Incident simulation models can analyze the
factor effect quantitatively. But the simulation and
calculation are complex and it’s difficult to refer all the
risk factors in a simulation model. Bayesian network
(BN) is an effective method for probabilistic analysis
and diagnose analysis and has been used to analyze oil
accident issues.

In this paper, an integrated model is established to
analyze the risk factors’ effects of an oil pipeline
accident. An oil pipeline accident case that happened in
China has been taken as an example. Risk factors are

identified qualitatively by the incident evolution diagram.

Then they are deployed as the nodes deployment rule of
BN model and initialed according to the conditional
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probabilities given by statistics and experts’ estimation.
Based on the BN model of this oil pipeline accident, the
effects of risk factors can be analyzed quantitatively and
the consequences can be predicted according to the most
likely consequence situations.

2 Quantitative Analysis Model of an
Accident Case

2.1 A Brief Description of Oil Pipeline Accident
Case

An oil pipeline explosion accident case has been taken as
the example because it refers to some important risk
factors. The accident occurred at 10:25 p.m., Nov. 22,
2013, in an industrial district in Qingdao city, Shandong
province in China. An oil pipeline broke, and the oil
leaked into a municipal drainage culvert. Because the
leakage to the culvert was not observed, the oil gas
density increased continuously until it exploded; 62
people died, 136 were injured and more than 75 million
RMB was lost in this explosion accident.

2.2 Identify Risk Factors Based on Incident
Evolution Diagram

An incident evolution diagram is built to identify risk
factors. This diagram comprises five kinds of nodes: Si
(incident Situation), Ei (key Environment condition), Ti
(emergency Target), Mi (response Mission) and Ci
(consequence). The initial incident state S1 means the
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incident occurs. Different environment condition Ei will
lead to different Si. The emergency response target Ti is
fixed to address the incident situation Si, and the mission
that needed to be executed is Mi. If the target Ti is
achieved, the final consequence Ci will occur in the
condition that Ti is the final emergency target.

The incident evolution diagram for the oil pipeline
accident case is shown in Figure 1. We can see that the
environment condition (Ej-confined space & FE>-water
area) will lead to serious consequences (C»-ground and
water pollution & Cs-explosion, casualties, economic
loss). Meanwhile, emergency management (M, M), M
and M,) can affect consequences obviously.
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Fig. 1. Incident Evolution Diagram of the Oil Pipeline Accident Case

2.3 Factor Effect Analysis Based on Bayesian
Network

2.3.1 Bayesian Network Method

The basic of BN is Bayesian condition probability theory.
It contains conditional independence and joint
probability distribution:

PV.V,, L ¥, 1v) =[PV /v) (i=12,L ,k) (1)
P(V,V, L ,m/v):ﬁP(K/Parent(K)) (i=L2,L k) (2)

Where V1, V>, ..., Vi represent various variables, v is
the normal node, which facilitates the expression of the
conditional probability, and Parent(};) is the parent
nodes of V;.

2.3.2 Dempster-Shafer Evidence Theory

The Dempster-Shafer (DS) evidence theory is a method
for quantitative analysis of system uncertainty. It can be
used to calculate the conditional probabilities of BN
factors $iR!K K ZEIS| AHIE. . In this BN model, the
conditional probabilities of risk factors’ are calculated
based on DS theory according to experts’ estimation.

2.3.3 Bayesian Network Model for Oil Pipeline
Accident

For an oil pipeline accident, the risk factors may refer to
environment, hazard, incident, hazard-affected carries,
emergency response, and consequences. As an integrated
effect analysis model, these risk factors nodes should be
considered and deployed according to the nodes
deployment rule of BN model as Figure 2.
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Fig. 2. Deployment Rule of the BN Nodes for an Oil Pipeline Accident

BN nodes include independent nodes and dependent
nodes. The factors of occurrence time, accident location,
hazard property (pipeline pressure, pipeline flux),
incident cause and key environment condition (confined
space nearby, water area nearby) are independent nodes.
Their occurrence probabilities are based on experts’
estimation and statistics. The factors of initial event,
secondary events (flame and fire ball, water pollution),
hazard-affected carries (threatened persons, buildings,
infrastructure and lifeline), emergency response and

consequences (casualties, economic loss, environment
pollution) are dependent nodes. Their conditional
probabilities are based on experts’ estimation using DS
methods. As the factor nodes have been identified and
deployed, and the occurrence probability and conditional
probability have been estimated, then the BN can be
constructed as Figure 3. It is a snapshot by the BN
software Netica. The effects of risk factors for
consequences can be quantitative analyzed by this BN
model.
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Fig. 3. The BN Model for the Oil Pipeline Accident Case

3 Results and Discussion

3.1 Scenario Setting and Consequences
Estimation

As the basic of effect analysis, the situations of scenario
nodes should be set according to the oil pipeline accident
case. The situation setting of scenario nodes, including
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Time & Location nodes, Hazards Property nodes,
Incident Case node, and Critical Environment
Conditions nodes, are shown as Table 1, and the
corresponding BN model is shown as Figure 4.

Table 1. Situation Setting of Scenario Nodes in the Oil
Pipeline Accident.

Situation

Scenario Node Setting
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Fig. 4. The BN Model for the Oil Pipeline Accident Case Based on Scenario Setting
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3.3 Water Area

It is more difficult to deal with the pollution in water
than on land. Therefore, Water Area Nearby is another
key environment condition. The water pollution will be
easier in condition that the water area is nearer, and will
be more serious in condition that the water area is larger.
The effect of Water Area Nearby factor to Environment
Pollution is shown as Figure 6.
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Fig. 6. Effect of Water Area Nearby factor to Environment
Pollution

Figure 6 shows the critical effect of Water Area
Nearby condition to Environment Pollution. Because the
result of Initial Event Oil Leaking is Large (54.0%, as
Figure 4), the probabilities of little environment
pollution (< 1 km?) is small (3.77% ~ 11.5%). And the
probability of the consequence “1 to 10 km?” is more
than 40% both in “Far & small” condition and “Near &
small” condition. It may result in serious water pollution
if there is large water area near the incident site,
especially for the consequence state “>50km?”. The
probability of the most serious environment pollution (>
50km?) increases significantly from the condition “Far &
Large” (14.8%) to “Near & Large” (45.1%).

3.4 Emergency Response

Emergency response aims to protect people, reduce
economic loss and avoid environment pollution. It plays
an important role for consequences because it can
control the incident, investigate the key environment
conditions and prevent secondary event, and protect
hazard-affected carriers. Take three kinds of
consequences  Casualties, Economic Loss and
Environment Pollution as the targets to analyze the effect

of “Emergency Response”. The result is listed in Table 2.

It is obvious that the more effective emergency response
is, the less consequences will be caused.

Table 2. The Effect of Emergency Response to Consequences.

Emergency Response

Probability (%)
Effecti | Gener
Poor
ve al
Casualties

(D <5 persons 14.9 12.0 | 9.21
@ 51010 220 | 169 | 174
persons
© 101030 311 | 317 | 301
persons

@ >30 persons 32.0 394 433

Economic
Loss @ < 1 million 45.0 3.86 | 0.66
@ 1 to 5 million 43.2 194 | 7.25
® 5to 10 million | 11.3 388 | 174
@ > 10 million 0.51 38.0 | 74.4
Environm 2
ent O <lkmiwater | 5 | 35, |
. arca
Pollution
2
@ 1to10km 300 | 333 | 335
water area

® 10 to 50 km?
water area

345 38.1 344

@ > 50 km?
water area

14.2 249 | 322

4 Conclusion

This paper introduces a quantitative analysis model of
the risk factors that affect oil pipeline network accident.
It uses the incident evolution diagram to illustrate the
process of incidents and to identify risk factors. Based on
Bayesian model, the incident consequences can be
estimated, and the risk factors’ effects can be analyzed
quantitatively.

In the oil pipeline accident case, the most likely
consequences are consilient with the case. As the
emergency resources are limit, the quantitative analysis
results may provide a theoretical basis to take effective
risk treatment measures for oil pipeline management,
which can be used in emergency preparation and
emergency response.
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