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Abstract：On the basis of the fundamental laws of conservation of energy in conjunction with local 
quadratic spline functions was developed a universal computing algorithm, a method and associated 
software, which allows to investigate the Thermophysical insulated rod, with limited length, influenced by 
local heat flow, heat transfer and temperature 

 

1 Introduction 
Supporting elements of modern gas-power plants 1 , 
nuclear and thermal power plants, hydrogen and jet 
engines, internal combustion engines, deep processing of 
mineral raw materials and oil rigs are operating in the 
complex field of power and heat. The reliability of the 
above mentioned plants depend on the characteristics of 
the hot-bearing elements. The elements considered as 
bearing rods of limited length and of constant cross 
section [1] [2]. In these problems, based on the fundamental 
laws of Thermal Physics [3] was determined the 
temperature distribution of the field along the length of 
the rod of limited length in view of the existing types of 
heat sources. Other similar problems were considered in 

[4-6]. This study was to determine the law of temperature 
distribution along the length of the test bar depending on 
the types of specified heat sources. In this paper, a 
horizontal rod of limited length and constant cross 
section is considered as a carrier element of construction. 
And the lateral surface of the test rod is completely 
insulated. The cross-sectional area of the left end of the 
rod is under heat flux with constant intensity. The cross-
sectional area of the right end of the rod has a heat 
exchange with the ambient environment area. But, in the 
simultaneous presence of different types of heat sources 
in the supporting elements of the strategic structures 
there are axial compressive forces, displacement 
distribution field, elastic, thermal and thermo-elastic 
deformations of components and related stress, in 
addition to the distribution of temperature field. 
Therefore, the development of fundamental methods for 
deep study of complex thermo-physical states of bearing 
structural elements is an actual problem of Applied 
Thermophysics. In this work following statements were 
 
 

defined with the help of the fundamental laws of 
conservation of energy [7]  

1) The law of the temperature distribution along the 
length of the rod; 
2) The value of its thermal expansion; 
3) The value of the arising axial compressive force; 
4) The law of distribution of elastic, thermal and thermo-
elastic components of the strain and stress; 
5) The displacement field. 

We consider the horizontal rod, with limited length L 
[см] and constant cross-sectional area F [см2]. The 
cross-section of the rod can be circular, quadrilateral, 
triangula 

2 Conclusion of resolving equations 
Thermal properties of the rod material characterized by a 
coefficient of thermal expansion of the material of the 
rod α [1℃], thermal conductivity кх [ Вт

см∗℃], as well as the 

modulus of elasticity кх [ Вт
см∗℃].  

The cross-sectional area of the left end of the rod is 
under heat flux q [ Втсм2]. Under the influence of the local 
heat flow the surface value of heat flux is negative, that 
is q<0. The cross-sectional area of the right end of the 
rod is under a convective heat transfer with the 
surrounding environment. Here, heat exchange 
coefficient is h [ Вт

см2℃ ], and ambient temperature is 
Т℃ [ ℃ ]. First must be determined the temperature 
distribution along the length of the test rod depending on 
the type of existing heat sources, thermal and 
geometrical characteristics of the rod. To do this, first we 
build a local approximational quadratic spline function.  

Design scheme of the problem is shown in Figure 1. 
 
 

Figure 1 - Diagram of the problem  
Suppose that 
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T(х = 0) =  Ti; T (x = L
2) = Tj; T(x = L) = Tk             

(1) 
Approximate the full second-order polynomial spline 
functions of the distribution of temperature along the 
length of the test rod [8]       
T(x) = ax2 + bx + c = φi(x) ∗  Ti + φj(x) ∗ Tj +
φk(x) ∗ Tk; 0 ≤ x ≤ L  

 (2) 
Where: 
 φi(x) = 2x2−3Lx+ L2

L2 ; φj(x) = 4Lx−4x2

L2 ;  φk(x) = 2x2−Lx
L2 ; 

0 ≤ x ≤ L        (3) 
 
Now we write functional for the problem that 
characterizes the law of conservation of energy [7] 

J = ∫ qTdSS(x=0) ∫ + ∫ kxx
2V (∂T

∂x)
2

 dV +
 ∫ h

2
(T − TОС)2dSS(x=L)  ,   

 (4) 
 

It should be noted that the dimension of each member 
is [Вт℃]. This is the work carried out by temperature, 
work force [кГ*см]. Due to the physical nature of the 
phenomenon, we have: 
 
               J1 =  ∫ q ∗ TdSS(x=0) = FqTi  
 
     (5) 
 
         J3 = ∫ h

2 (T − TОС)2dSS(x=L) =  Fh
2 (Tk − TОС)2  

 
                               (6) 
 
For the calculation of the integral over the volume of 
equation (4), it is necessary to determine the temperature 
gradient 
 
           ∂T

∂x = ∂φi
∂x Ti + ∂φj

∂x Tj + ∂φk
∂x Tk = 4x−3L

L2 Ti + 4L−8x
L2 Tj +

4x−L
L2 Tk, 0 ≤ x ≤ L  

(7) 
 
Then substituting (7) in terms of J, and using the known 
formula 
 
∫ f(x)dV = F ∫ f(x)dx L

0V we have 
 

          J2 = ∫ kx
2 (∂T

∂x)
2

dV = Fkx
∂xV (7 Ti

2  − 16TiTj +
 2TiTk − 16TjTk + 16Tj

2 + 7Tk
2)    

(8) 
 

Then, an integrated form of the complete thermal energy 
functional is: 
 

J = J1 + J2 + J3 =
= FqTi

+ Fki
∂x (7 Ti

2  − 16TiTj +  2TiTk

− 16TjTk + 16Tj
2 + +7Tk

2) 
          + Fh

2 (Tk − TОС)2     
                    (9) 
 

It should be noted that for determining the values of 
Ti, Tjи Tk  We need to get the corresponding system of 
linear algebraic equations, which take into account all 
existing natural boundary conditions, varying from J to 
Ti, Tjи Tk. 
 
∂J

∂Ti
= 0; → Fq + Fkx

6L (14Ti − 16Tj + 2Tk) = 0 
∂J

∂Tj
= 0; →  Fkx

6L (−16Ti + 32Tj − 16Tk) = 0  

 
                                        (10) 
 

∂J
∂Tk

= 0; → Fkx
6L (2Ti − 16Tj + 14Tk) + FhTk − FhTОС

= 0 
 
After simplification, we have 
7Ti − 8Tj + Tk = − 3Lq

kx
 

Ti − 2Tj + Tk = 0    
                            (11) 
 

7Ti − 8Tj + 7Tk + 3Lh
kx

Tk = 3LhTOC
kx

 

 
After solving this system we define that 
 
   Ti = TOC − q

h − Lq
kx

; Tj = TOC − q
h − Lq

2kx
; Tk = TOC − q

h 
       

  (12) 
 

Then substituting (12) into (2-3) and after simplifying 
it we define the law of temperature distribution along the 
length of the test rod in view of simultaneous presence of 
the thermal insulation, heat flux and heat transfer. It will 
have the following form: 
 
T = T(x, TOC, q, h, L, kx) = (TOC − q

h − qL
kx

) + q
kx

x ; 0 ≤
x ≤ L         

  (13) 
 

This shows that in this case the law of the 
temperature distribution along the length of the test bar is 
linear 

3 Determination of thermophysical state 
of the rod 
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linear 

3 Determination of thermophysical state 
of the rod 

 

Now we solve next problem. Because of the temperature 
field, the rod will extend. It is required to determine the 
elongation of the rod while it is under different sources 
of heat. To do this, we assume that the left end of the rod 
is rigidly fixed, and the right is free. From the general 
laws of thermodynamics [7-8] we known that the value 
of elongation of the rod from the temperature field is 
defined as:  

∆lT = ∫ αT(x)dxL
0    (14) 

 
If assume that α=const, then 

  ∆lT = ∫ αT(x)dx = αL(TOC
L

0 − q
h − qL

2kx
)               

  (15) 
 
Next step is to solve the third problem. If both ends of 
the rod is rigidly-clamped, the rod can neither lengthen 
nor shorten. In this case appears an axial compression 
force R[кг]. It is defined as the solution of statically 
indeterminate problems, while applying strain 
compatibility conditions: 
 
RL
EF + ∆LT = 0 → R =  − ∆LTEF

L = −αEF(TOC − q
h − qL

2kx
)

                                              (16) 
 
After this the solution for the fourth problem is easily 
determined, defining the emerging field of thermo-elastic 
stressσ [ кГ

см2]. It is determined in accordance with Hooke's 
law: [9] 
 

σ = R
F =  − αE(TOC − q

h − qL
2kx

)  
                                                         (17) 
 
This shows that the thermoelastic component of the 
stress field distribution σ is straight and parallel to the 
shaft axis and the x-axis. Using again the generalized 
Hooke's law we find a solution for the fifth problem of 
determining the thermo-elastic deformation of the 
component 
 

ε = σ
E =  −α(TOC − q

h − qL
2kx

)      
   (18) 

 
From solutions it is clear that it linear and parallel to the 
axis OX. If we consider that  q<0, then (16-18) shows 
that the R, σ, ε  will compress. Next, using the 
fundamental laws of thermodynamics we can solve the 
sixth problem of determining the field of thermal strain 
 
   εT(x) = −αT(x) = −α [(TOC − q

h − qL
kx

) + q
kx

x],    0 ≤
x ≤ L  

 (19) 
 
This shows that εT- will compress and distribution of the 
field will be linear. 
The seventh problem can be determined by using the 
generalized Hooke's law. Then the field distribution of 
the temperature stress component will be: 
  

        σT(x) = EεT(x) = −αE [(TOC − q
h − qL

kx
) + q

kx
x],  

0 ≤ x ≤ L  
(20) 

 
From the decision it is clear that it has linear and 
squeezing character. The eighth problem of determining 
the field of elastic deformation of the components is 
determined from the fundamental law 
        εx(x) = ε − εT(x) =  α

kx
(− qL

2 + qx) =  qα
kx

(− L
2 +

x),   
  

(21)  
This shows that εx(x) is linear. At the length 0 ≤ x ≤

L
2, it has expansive character. In section x=L

2, εx (L
2) = 0. 

Further it compresses. 
The relevant law of Hooke determines the decision of the 
tenth problem 
 
                     σx(x) = Eεx(x) = qαE

kx
(− L

2 + x)  
               (22) 
 
It is similar to εx(x). 
 
Now, finally, we decide the tenth problem of determining 
displacement field U(x). It is determined from the 
Cauchy relation 
 
                εx = ∂U

∂x = → U(x) = ∫ εx(x)dx =  qα
kx

(− L
2 x +

x2

2 ) + C, где С=const. 
 
The value of C is determined from the condition of 
pinching the two ends, ie U(x=0)=U(x=L)=0. Then we 
have that С=0. Then the field of movement is  
 
                        U(x) = qαx

kx
(x

2 − L
2),  0 ≤ x ≤ L  

 
              (23) 
 
This shows that U (x) has a quadratic form. The cross 
section located on the interval 0 < x ≤ L moves in the 
direction of OX.  
Naturally, clamped ends do not move, ie, 
U(x=0)=U(x=L)=0. 

4 Conclusion 
Based on the fundamental laws of energy conservation 
was developed computational algorithm and method of 
steady thermo-physical condition of the insulated rod of 
limited length, which is under the heat flow and heat 
transfer. It was found that the temperature distribution of 
elastic and temperature components are linear. While the 
value of the thermoelastic component of the strain and 
stress will be constant. The distribution law of movement 
will have a quadratic character, and all the section of the 
rod will move from left to right if q<=0 

3

E3S Web of Conferences 38, 04002 (2018)	 https://doi.org/10.1051/e3sconf/20183804002
ICEMEE 2018



 

References: 
1. Tikhonova Zh.M , Nurlybaeva E.N , Kudaykulov, A, 

Zhumadillaeva A.K. Numerical study of stablished 
Thermo-mechanical state of rods of limited length, 
with the presence of local heat flows, temperatures, 
heat Insulation and heat transfer [J]. Advanced 
Science Letters, 2013, 19 (8) : 2395-2397. 

2. Tashenova Zh.M., Nurlybaeva E.N, Kudaykulov A. 
Developing a Computational Modeling  Algorithm  
for Thermostressed Condition of Rod made of Heat-
resistant Material ANB-300 type [J].  Advanced   
Materials Research, 2013, 19 (1):  4562-4566. 

3. Nicolas X, Benzaoui A, Xin S. Numerical 
simulation of thermoconvective flows and more 
uniform depositions in a cold wall rectangular 
APCVD reactor [J]. Crystal Growth, 2008, 310 (1): 
174-186. 

4. Chen W.R. A numerical study of laminar free 
convection heat transfer between inner sphere and 
outer vertical Cylinder [J]. International Journal of 
Heat and Mass Transfer, 2007, 50 (13-14) : 2656-
2666. 

5. Gamrat G, Favre-Marinet M, Le P.S. Numerical 
study of heat transfer over banks of rods in small  
Reynolds number cross-flow [J]. International 
Journal of Heat and Mass Transfer, 2008, 51 (3-4): 
853-864. 

6.   Nouri-Вorujerdi A, Lavasani A.M. Experimental 
study of forced convection heat transfer from a cam  
shaped tube in cross flows [J]. International Journal 
of Heat and Mass Transfer, 2007. 50 (13-14): 2605-
2611. 

7. Yalcin H.G, Baskaya S. Sivrioglu M. Numerical 
analysis of natural convection heat transfer from 
rectangular shrouded fin arrays on a horizontal 
surface[J]. International Communications in Heat 
and Mass Transfer, 2008, 35 (3): 299-311. 

8. Das A, Das B. Thermo-elastic stress distribution in 
three layered system [J]. Proc. Nat. acad Sci, 2001,  
71(1): 21-31. 

 

4

E3S Web of Conferences 38, 04002 (2018)	 https://doi.org/10.1051/e3sconf/20183804002
ICEMEE 2018


