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Abstract. Designing retention facilities is a complex engineering process 
that requires the collection of the detailed hydrological data of a catchment 
and hydraulic sewerage system. The acquired data are necessary to prepare 
a model of the retention tank in appropriate software for hydrodynamic 
modelling. The article shows the results of tests concerning the analysis of 
the sensitivity of a sewerage model of a rainwater retention tank which may 
be implemented in this software. The results of tests allowed determining 
the impact of the individual hydraulic characteristics of the catchment and 
the sewerage system on the required retention capacity of a tank. A planned 
analysis is performed based on artificial neural networks and the required 
data are acquired by hydrodynamic simulations in SWMM 5.1.   

1 Introduction 
The increasing sealing of urban areas results in larger volumes of waste rainwater directed to 
sewerage systems [1, 2, 3]. Its effect is a higher flow rate of wastewater in sewerage and 
water courses [4, 5]. Their quality deteriorates as well, which is caused by high organic and 
inorganic pollutions [6]. This results in the need to continuously modernize the system and 
adapt it to the new hydraulic flow conditions. In such cases, it is beneficial to perform a 
financial analysis that is helpful in choosing a solution to this problem [7, 8, 9, 10, 11]. Very 
often its result indicates the necessity to use devices that periodically store the excess of 
rainwater, among which the most important are retention tanks.  

A serious issue related to the use of retention facilities is properly determining their 
required retention capacity. Currently, there are many procedures used for designing 
retention tanks that allow obtaining very reliable results provided that hydrodynamic 
modelling software is used. However, these require a complex model of catchment and 
sewerage system that are characterized by a high number of hydraulic and hydrological 
characteristics. This issue has been discussed in the works [12], where the author uses the 
Hellwig’s information capacity indicator method and showed a low importance of roughness 
coefficients of a catchment and a sewerage system in the design of retention tanks. A similar 
task has been done by Skotnicki and Sowiński [13] who showed the variability of catchment 
discharge hydrographs depending on the values of these characteristics. 
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2 Aim of the research 

The goal of the tests is to analyze the impact of the hydraulic and hydrological characteristics 
of a catchment and sewerage system in the dimensioning of a required tank’s retention 
capacity. The results may be helpful for designers of retention facilities to eliminate from 
among the high number of hydraulic characteristics of a catchment and sewerage system, 
those that are less important from the viewpoint of dimensioning of retention tanks and 
determine those that should be considered, particularly during the design process. This will 
reduce the number of calculations needed to determine the required capacity. 

3 Object of research 
The object of tests is a single-chamber retention tank for the hydraulic relief of a sewerage 
network. The tank operated as a flow tank which is shown in Figure 1. 

Fig. 1. Retention tank diagram. 

The basic design characteristics is a retention capacity which is conditioned by the 
hydraulic and hydrological characteristics of the catchment and the rainfall selected 
depending on the assumed degree of hydraulic safety.  

According to the assumed methodology, the quality specification of model characteristics 
has been provided, which consisted of classification into three basic groups: 

• input characteristics (independent variables) 
• output characteristics (dependent variable); 
• constant characteristics. 
A sewerage model of a retention tank that includes input variables (independent 

characteristics) as well as output value (dependent variable), which is the required retention 
capacity and the constants are shown in Figure 2. 

The range of individual independent variables to be analyzed is shown in Table 1. The 
group of characteristics included: 

• Wastewater level to sewer diameter (hk/D), 
• Maximum theoretical wastewater level in a tank hs. 
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Fig. 2. Quality model of the tested element. 

The first stage of tests was to acquire the data for analysis which were received by 
simulations made with SWMM hydrodynamic modelling software. These calculations were 
to determine the required retention capacity of tank V (output characteristics, dependent 
variable) in different configurations of the sewerage system. 

Table 1. The parameters characterizing the object of study. 

Independent variable Description Minimum Maximum 

Flow reduction coefficient, β 
Ratio of maximum volumetric flux of 

incoming wastewater QA and volumetric 
discharge flux QB 

0,2 0,9 

Sewer roughness coefficient, nk Roughness of wastewater line 0.008 s/m1/3 0.013 s/m1/3 

Catchment roughness coefficient, nz Catchment surface roughness 0.013 s/m1/3 0.04 s/m1/3 

Sewer length, Lk Network length from initial node to 
retention tank section 100 m 2000 m 

Sewer gradient, %k Sewer bottom inclination against level 1‰ 10‰ 

Catchment gradient, %z Plane inclination against level 1‰ 10‰ 

Catchment width Surface runoff width 2 •Lk 

A literature review [14] allowed determining that with an increased drainage surface F, 
the required retention capacity of tank V is higher. As a result, the tests did not cover its 
impact on the retention capacity of tank V and only covered the catchment of 5 ha. 

4 Methodology 
Tests to determine the impact of analyzed hydraulic characteristics on the capacity of a 
retention tank were made for a dataset consisting of the results from simulations of the 
operation of different sewerage systems. The analysis covered how the capacity of a retention 
tank changes when varying one input value with the same values of other characteristics. An 
example of some of the analyzed data is shown in Table 2. A total of 565 system 
configurations were analyzed.  

The sensitivity analysis of a retention tank was conducted using the neural networks. 
Statistica software was used to generate the analysis. The acquired data were input into the 
program environment and in the creator for artificial neural networks; the settings were 
defined in the division of data into: 
 test data - 70% of all data 
 learning data - 15% of all data  
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 validation data - 15% of all data. 
 The neural networks obtained with a creator were put into a selection where one network 
characterized by the lowest error and highest match value was chosen.   

Table 2. The sample of parameters used in the analysis. 
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 ‰ m m s/m1/3 ‰ s/m1/3 - 
1 1.00 250.00 100 0.01 5.00 0.02 0.2 
2 2.00 250.00 100 0.01 5.00 0.02 0.2 

3 3.00 250.00 100 0.01 5.00 0.02 0.2 

4 4.00 250.00 100 0.01 5.00 0.02 0.2 

5 5.00 250.00 100 0.01 5.00 0.02 0.2 

6 6.00 250.00 100 0.01 5.00 0.02 0.2 

7 7.00 250.00 100 0.01 5.00 0.02 0.2 

8 8.00 250.00 100 0.01 5.00 0.02 0.2 

9 9.00 250.00 100 0.01 5.00 0.02 0.2 

10 10.00 250.00 100 0.01 5.00 0.02 0.2 

11 3.00 100.00 100 0.01 5.00 0.02 0.2 

12 3.00 150.00 100 0.01 5.00 0.02 0.2 

13 3.00 200.00 100 0.01 5.00 0.02 0.2 

14 3.00 250.00 100 0.01 5.00 0.02 0.2 

15 3.00 350.00 100 0.01 5.00 0.02 0.2 

16 3.00 500.00 100 0.01 5.00 0.02 0.2 

17 3.00 750.00 100 0.01 5.00 0.02 0.2 

18 3.00 1000.00 100 0.01 5.00 0.02 0.2 

19 3.00 1500.00 100 0.01 5.00 0.02 0.2 

20 3.00 2000.00 100 0.01 5.00 0.02 0.2 

… … … … … … … … 

5 Result of research 
The MLP neural network model (Multi-Layered Perceptron) with architecture 7 – 12 – 1 was 
suggested to predict the results of the capacity of a retention tank V. The network had the 
lowest learning errors (0.997664), testing errors (0.996860) and validation errors (0.997003) 
among other networks offered by the program.   

The principle of operation of this network consists in calculating the weighted average 
from the input values by each neuron. The result itself is calculated with a transition function 
and led to the output. As an activation function in a hidden layer and an output layer, an 
exponential function was assumed and the error function was determined with the sum of 
squares method.   
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from the input values by each neuron. The result itself is calculated with a transition function 
and led to the output. As an activation function in a hidden layer and an output layer, an 
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The neural network whose architecture is shown in Figure 3 is characterized by seven 
neurons in an input layer, twelve neurons in a hidden layer and one neuron in an output layer.   

 
Fig. 3. Diagram of an artificial neural network for a retention tank model. 

Based on the results of simulation tests and results calculated using neural networks, it 
can be said that the described model of an artificial neural network has a high accuracy. This 
is shown in Fig. 4 which compares the expected values as results of achieved required 
retention capacity from computer simulations and values obtained with a developed model 
of artificial neural network.  

Based on the developed neural network mode, a global sensitivity analysis was performed 
to indicate which characteristics mostly impact the required retention capacity of tank V. The 
result of it are the values assigned to each characteristics and the higher the value, the greater 
is the impact on a dependent variable. The results are shown as a bar diagram in Figure 5. 
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Fig. 4. Analysis of linear regression between experimental data and SSN calculation. 

Fig. 5. Global sensitivity analysis (nk – sewer roughness coefficient, nz – catchment roughness 
coefficient, %z – catchment gradient, W – catchment width, L – sewer length, %k – sewer gradient B – 
flow reduction coefficient). 

The data implies that the greatest impact on the required retention capacity of retention 
tank V is shown by the wastewater flow reduction coefficient β. This value was 241.32. 
Another high value (10.06) was shown by the sewer line gradient %k. Other characteristics 
have a small impact on a dependent variable (values below 3).  

However, it should be noted that there is a high discrepancy among the top results of the 
wastewater flow reduction coefficient β and sewer gradient %k. Therefore, further analysis 
were made for constant values of β coefficients equal to 0.2, 0.5 and 0.8. For this purpose, 
individual neural networks were developed for the flow reduction coefficients β. 

Further tests led to the development of three artificial neural networks (SSN) whose 
typical characteristics are compared in Table 3. 
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Table 3. Characteristic parameters of obtained artificial neural network for the defined flow reduction 
coefficient β. 

 Flow reduction coefficient 
0.2 0.5 0.8 

Network 
architecture 

MLP 6-11-1 MLP 6-7-1 MLP 6-6-1 

Quality (learning) 0.963341 
 

0.968000 
 

0.948031 
 

Quality (testing) 0.881908 
 

0.952681 
 

0.924667 
 

Quality (validation) 0.921822 
 

0.770830 
 

0.915865 
 

Activation function  Exponential 
 

Exponential 
 

Hyperbolic 
tangent 

Output activation 
function 

Hyperbolic 
tangent 

Hyperbolic tangent Linear 

The created artificial neural networks were used for a global sensitivity analysis of a 
retention tank at a constant reduction coefficient β. Results of this analysis are shown in 
Figure 6. 

 
Fig. 6. Global sensitivity analysis for coefficients β 0.2, 0.5, 0.8 (nk – sewer roughness coefficient, nz– 
catchment roughness coefficient, %z – catchment gradient, W – catchment width, L – sewer length, %k 
– sewer gradient B – flow reduction coefficient). 

Considering the results separately for each value of the wastewater flow reduction 
coefficient β, it can be concluded that a hierarchy of importance was preserved for the 
analyzed characteristics, which was achieved in the first stage of tests. The analysis 
confirmed that the greatest values (impact) was shown by sewer gradient %k, then the runoff 
width W, sewer length L, catchment gradient %z; and the lowest importance can be assigned 
to roughness coefficients of the catchment nz and the sewers nk.  

On the other hand, an analysis of the whole range of flow reduction coefficient β showed 
that the importance of other characteristics (%z, L, W, nk, nz) depends on its value. It does 
not apply to the sewer gradient which at this stage has always, regardless of β, had the highest 
values.  
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The analysis at the first and the second stage allowed establishing that the highest impact 
was shown by β and sewer gradient %k; while the lowest impact was shown by roughness 
coefficients for the catchment nz and the sewer system nk.  

The results are coherent with the work of Pochwat [12] in respect of a small impact of nz 
and nk coefficients on the required retention tank capacity.  The tests [12] were done with the 
Hellwig’s information capacity indicator method and the cohesion of results in this respect 
confirms the rightness of the conclusions and relevance of using both methods. This rightness 
is also confirmed in the work of Skotnicki [13], where the author states that the change of 
said values affects the discharge hydrographs but the differences are small. 

6 Conclusions 

The global sensitivity analysis for a model of a sewer retention tank with the use of artificial 
neural networks allowed determining the catchment and sewer system input characteristics 
which have the greatest and the lowest impact on the required retention tank V capacity. The 
tests also confirmed the usefulness of artificial neural networks in analyzing the sensitivity 
of retention elements.   
The tests allowed drawing the following practical and cognitive conclusions: 
• Flow reduction coefficient β and sewer system gradient %k have the greatest impact on the 
required retention tank V capacity;  
• Manning’s roughness coefficient for the sewer nk and for the catchment nz can be 
considered insignificant to determine the required retention capacity of tank V; 
• Flow reduction coefficient β affects the hierarchy of importance of characteristics nz, nk, 
W, L, %z impact on the required retention capacity of tank V. 
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