
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 49, 00017 (2018)	 https://doi.org/10.1051/e3sconf/20184900017
SOLINA 2018

 

The use of discriminant analysis methods for 
diagnosis of the causes of differences in the 
properties of resin mortar containing various 
fillers  

Bernardeta Dębska1,* 

1Rzeszow University of Technology, The Faculty of Civil and Environmental Engineering and 
 Architecture, Poznanska 2, 35-082 Rzeszow, Poland 

Abstract. Resin mortars belong to the group of concrete-like construction 
composites. They are obtained by mixing a synthetic resin with a hardener 
and an appropriately selected aggregate. The latter component is usually as 
much as 90% of the composite mass and can largely shape the 
characteristics of the finished product. The fact that the type of filler used 
can significantly differentiate the values of physical and mechanical 
parameters of epoxy mortars is confirmed by the results of the exploratory 
data analysis method used in this article, which is discriminant analysis. 
This allows us to examine differences between groups of objects based on 
a set of selected independent variables (predictors). It is used to solve 
a wide range of classification and prediction problems. The core of 
discriminant analysis is a model presented in the form of a linear 
combination of independent variables, which allows classification of 
observations (e.g. test mortars) into one of the groups that are of interest to 
the researcher. In discriminant analysis one can distinguish the learning 
stage (model building), in which classification rules are created based on 
research results (training set) and the classification stage, i.e. the use of the 
model, e.g. for testing its prognostic accuracy.  

1 Introduction  
Polymer mortars are composites in which the cement binder has been completely replaced 
with synthetic resins, usually chemically hardened ones. In the mortars, their content varies 
from 8 to 20% by volume. The remaining part is mostly filled with mineral quartz 
aggregate [1–3]. Aggregate therefore accounts for about 90 percent of the resin composite, 
which is why it has an enormous impact on its quality. For the production of resin mortars, 
durable and clean aggregate is used. The mechanism of the aggregate-binder interaction in 
resinous concrete has not yet been explained, therefore it is difficult to give a detailed 
description of the aggregate selection process. However, when designing a new composite, 
one should certainly consider such aggregate features as: type (physical and chemical 
properties), grain size and degree of contamination and moisture. In practice, natural 
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aggregates (gravel aggregates, mineral aggregates from natural resources) and broken 
aggregates (produced from solid rocks, i.e. basalt, granite, sandstone, dolomite, limestone, 
etc.) are used for the production of resin concrete [1, 4]. There are also studies [5–7] on the 
possibility of obtaining resin mortars with the addition of other types of fillers. 

Resin mortars are characterized by good chemical resistance and high durability. 
In addition, they are characterized by a very good seal, excellent adhesion to other building 
materials, and a short time needed to reach operating efficiency. The results of the tests 
described in this article prove that the use of aggregates other than quartz sand can 
significantly affect the parameters characterizing the mortars, including primarily their 
strength characteristics. In addition, it appears that a lighter composite, characterized by 
greater thermal and acoustic insulation, can also be obtained. The type of filler used 
therefore differentiates mortar properties. Deciding which features describing the mortar 
distinguish (discriminate) two or more naturally separating groups, enables the use of 
a statistical method called discriminant analysis.  

Discriminant analysis allows us to examine differences between groups of objects based 
on a set of selected independent variables (characteristics, attributes, predictors). The group 
of statistical techniques referred to as discriminant analysis applies to a whole range of 
research and prediction problems, among others, due to the use of the fairly simple 
mathematical model underlying it. At its core is a linear combination of independent 
variables (also known as discriminatory variables), which allows us to classify observations 
(for example, of a tested mortar) to one of the groups that are of interest to the investigator [8].  

Two main stages can be distinguished in discriminant analysis: 
1. The learning stage (model building) in which classification rules are created based on 

research results (training set). 
2. The classification stage (using the model) in which the set of objects whose membership 

is unknown is classified based on the class characteristics found earlier. 
In the first stage of application of discriminant analysis, procedures describing and 

interpreting intergroup differences are launched. Subsequently, the procedures for 
classifying cases are carried out, i.e. based on the observation or experiment obtained from 
the values of the features to which the new case belongs. This task consists in determining 
the canonical discriminative functions separating the studied groups. In the case of 
differences between groups, each of them can be treated as a cloud of points in the space 
with axes that are discriminating variables. These point clouds may overlap slightly, but 
most of the points are concentrated in centroids spaced apart, i.e. fictitious points whose 
coordinates are equal to the group mean of each discriminating variable. It is accepted that 
the centroids are typical representatives of each group.  

The main purpose of discriminant analysis is to predict the group to which the classified 
case belongs. All classification procedures use a case-by-case comparison with each 
calculated centroid to find the closest one. The classification process is associated with the 
creation of one or more functions, classifying the analysed cases into appropriate groups. 
This is the so-called linear discrimination consisting of a linear combination of simple 
separating classified groups. This was first put forward by Ronald Fisher, who introduced 
a separate linear character combination for each i-th group (1): 

Ki = a io + a i1*x1 + … + aij*xj        (1) 

where: aij, j = 0.1, … , n they are coefficients calculated from discriminatory variables for 
each classification function. There are as many functions as there are groups (i = 1, 2, ..., g). 
With the functions defined in this way, the case is classified into the group for which Ki 
assumes the highest value.  
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To assess the usefulness of classification equations, usually a set of data is divided into 
two subsets: the learner and tester (if the sample is large), or new data should be collected 
to confirm the accuracy of the classification. 

Discriminant analysis can be effectively applied in many fields of science. Most 
examples concern psychology, sociology, economics or medicine. Also, in the field of 
technical sciences, discriminant analysis is a diagnostic method applied. For example, 
M. Hajigholizadeh and A. M. Melesse used methods of discriminant analysis to assess 
water quality and to assess its spatial and temporal changes [9]. S.R. Oro et al. described 
a multidimensional statistical analysis of displacements of a concrete dam in relation to 
environmental conditions, using various statistical methods, including discriminant 
analysis [10]. Gabriela Vítková et al. used this method to classify bricks [11]. In the 
available literature, however, there are no articles describing the possibility of using 
discriminant analysis as an effective tool to solve the problems of designing new building 
materials using this method of data mining. This article presents the possibility of using the 
discriminant analysis method for testing mortars obtained using three different types of 
aggregates, i.e. perlite, expanded clay and rubber waste granulate, which are a partial 
substitute for quartz sand. 

2 Materials and Methods 
Epidian 5 epoxy resin was used to obtain resin mortars. Z-1 hardener (triethylenetetramine) in 
the amount of 10% (by weight) compared to the amount of resin, was used to cure the resin.  

The main aggregate was quartz sand of a 0–2 mm grain size in accordance with the  
PN-EN 196-1 specification. Mortar modification consisted in substituting individual sand 
fractions at 0, 10, 20, 30%, 40% and 50% by volume, respectively with perlite (P), 
expanded clay (LECA) and rubber waste granulate (RW).  

Based on the available literature data [12] and our own findings on resin mortars [13–15], 
a fixed ratio of resin to aggregate of 0.22 was established.  

2.1 Sample preparation 

Adequate amounts of epoxy resin were weighed and mixed thoroughly with a hardener of 
10% by weight of the resin mass until a homogeneous structure of the mixture was 
obtained. The resin compositions thus prepared were transferred to the bowl of the 
laboratory mixer and mixed with standard sand previously weighed and mixed with 
an appropriate amount of modifier, maintaining the same mixing time and constant rotation 
of the mixer. The finished mortar was placed in steel moulds with dimensions 
40×40×160 mm for the purpose of strength tests and to determine the bulk density. For the 
curing process to take place, the samples were left for 7 days under laboratory conditions.  

2.2 Testing method 

2.2.1 Flexural and compressive strength  

The flexural strength and compressive strength tests were carried out in strength machines 
equipped with appropriate inserts, in accordance with the PN-EN 196-1: 2006 standard. 
For compressive strength tests, the bar halves remaining after the flexural strength tests 
were used. 
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2.2.2 Bulk density 

The bulk density determination was carried out in accordance with PN-85/B-04500:1985, 
for samples with dimensions 40 x 40 x 160 mm. The weight of the bars was determined on 
technical scales. The volume of the samples was calculated based on their dimensions. 
The value of the bulk density was determined according to the formula (2): 

ρ = m/V              (2) 

where: 
ρ - bulk density, g/cm3, 
m - sample mass, g, 
V - sample volume, cm3. 

3 Results and Discussion  
Results of this study were summarized in the table, which then served as a spreadsheet with 
the data necessary to carry out the analysis in the program Statistica 12. A fragment of this 
database is presented in the table shown in Figure 1. The data set contains values for three 
input variables: bulk density, flexural strength and compressive strength; epoxy mortars 
were obtained using three different fillers, i.e. perlite, expanded clay and rubber waste. 
The input file contained 5 columns. The first column gives information about the type of 
aggregate used to obtain the mortars (type of modifier – marked as P for perlite, LECA for 
expanded clay and RW for rubber waste). It was the type of aggregate that was the so-
called grouping variable identifying the type of mortar. However, in the next columns of 
the table, the values of bulk density, flexural strength and compressive strength determined 
for the samples made were compiled. The final column of the table (Stage) contains data on 
the basis of which will be created and evaluated a system for classification of mortars into 
three groups, highlighted in the first column of the table. This variable has the character of 
the sample identifier and allows us to distinguish the sample intended for analysis 
(Training) and the sample intended for cross-checking (Test) allowing us to assess the 
quality of the classifier. 
 

 
  

Fig. 1. Fragment of the table of results for the determination of the physical and mechanical 
parameters of the mortars. 
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The creation of the diagnostic system proceeded in two stages: 
• Step 1. Building a classifier using the cases that make up the training set, marked in the 

table as Training – a total of 45 cases. At this stage, the analysis of discriminatory 
functions is used to decide which variables allow the best way to divide a given set of 
cases into naturally occurring groups.  

• Step 2. Validating the operation of the classifier using cases labelled Test. For this 
purpose, 3 cases for each type of mortar were randomly selected from the entire data set, 
which created a 9-piece test set that allowed for the assessment of the prognostic 
correctness of the designated discriminant functions by the cross-analysis method.  

Data analysis was started from the calculation of descriptive statistics such as: mean, 
medians, standard deviations. The average values of individual variables and the number of 
important cases (N) determined in the Statistica program for each group and in total for all 
groups are summarized in Table 1. The graph showing the ranges of the variables examined 
(summary mean values with measures of dispersion) is shown in Figure 2. 

Table 1. Results of calculation of parameters describing the variables. 

Type of 
aggregate 

Bulk density, 
g/cm3 

Flexural 
strength,  

MPa 

Compressive 
strength,  

MPa 
N  

important 

P 1.893778 25.33500 97.59444 18 
LECA 1.899222 26.24111 94.96111 18 
RW 1.857889 18.98833 71.56389 18 
Total 1.883630 23.52148 88.03982 54 

 

 
Fig. 2. Ranges of variables identified in studies. 

Based on Figure 2, it can be concluded that the variables are significantly different in 
size, which calls for the application of standardization procedures during the construction of 
the classification model by means of discriminant analysis. For the discriminant analysis, 
the Multidimensional exploratory techniques module included in the Statistica program was 
used. The variable grouping was the variable Type of modifier, which clearly defines the 
membership of cases (test mortars) to the three groups P, LECA and RW. The independent 
variables are the parameters determined during mortar tests.  
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While defining the discriminant function, the stepwise analysis option was applied, 
thanks to which the program introduced variables to the discriminant function model one 
after another, always choosing the variable that made the most significant contribution to 
discrimination. Table 2 shows the contribution of each variable to the general 
discrimination of mortars containing various types of aggregates. The Wilks’ lambda 
parameter shown in Table 2 is a standard statistic used to assess the statistical significance 
of the discriminatory power of the current model. Its value ranges from 1.0 
(no discriminatory power) to 0.0 (excellent discriminatory power). On the other hand, the 
partial Wilks’ lambda parameter defines the specific contribution of a given variable to the 
process of group discrimination. The partial Wilks’ lambda value indicates that the bulk 
density variable makes the greatest contribution, the compressive strength variable less, and 
the flexural strength variable – the smallest contribution to the overall discrimination. 
Therefore, it can be concluded that bulk density is the main variable that allows the 
discrimination of mortars obtained using different types of aggregates. 

Table 2. Assessment of the suitability of individual variables in discriminant analysis. 

 N=54 

Summary of the discriminant function analysis: N var. in the model: 3; 
Grouping: Modifier type (3 groups) 
Wilks’ lambda: .20836 approx. F (6.98)=19.449 p< .0000 

Wilks’ 
lambda 

Partial 
Wilks 

F removed 
(2.49) p Toler. 1-Toler. 

(R2) 
Flexural strength, MPa 0.264144 0.788824 6.55890 0.002992 0.186143 0.813857 
Bulk density, g/cm3 0.447912 0.465188 28.16689 0.000000 0.192125 0.807875 
Compressive strength, MPa 0.319290 0.652583 13.04311 0.000029 0.113812 0.886188 

In the next step, Statistica generated a sheet containing the results presented in Table 3, 
which show how many discriminatory functions can be interpreted. In this case, both 
discriminant functions are statistically significant (p <0.05). Therefore, it is necessary to 
consider two separate conclusions (interpretations) on how much the values of bulk density 
and flexural and compression strength allow discrimination between types of mortar. 
The determination of canonical discriminant functions was based on the standardized 
coefficients of these functions listed in Table 4. These coefficients relate to standardized 
variables and refer to comparable scales, so they can be used for interpretation (this is 
particularly important when, as shown in Figure 2, the variables are significantly different 
in size). In the first discriminating function, the bulk density and compressive strength are 
the most important. Flexural strength also contributes to this function. The second function 
is determined mainly by strength variables, and to a lesser extent by bulk density. In the last 
two rows of table 4 there are eigenvalues (roots) for each discriminant function and the 
cumulative ratio of the explained variance corresponding to each function. These data allow 
us to conclude that the first function is responsible for over 93% of the explained variance, 
i.e. 93% of the total discriminative power is explained by this function. Thus, the number 
one function is clearly "the most important".  

Table 3. The results of a chi-square test of the following roots. 

Roots 
removed  

Chi-square tests of the following roots  

Eigenvalue Canonical 
R 

Wilks’ 
lambda Chi-square df p 

0 2.993157 0.865778 0.208363 78.42359 6 0.000000 
1 0.201883 0.409844 0.832028 9.19448 2 0.010080 
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Table 4. Standardized coefficients of the discriminant functions. 

Variable 
Standardized coefficients 

for canonical variables  
Root 1 Root 2 

Flexural strength, MPa -0.64124 2.21790 
Bulk density, g/cm^3 1.91555 0.44495 
Compressive strength, MPa -1.64650 -2.46484 
Eigenvalue 2.99316 0.20188 
Cum. prop. 0.93681 1.00000 

 
Based on the data shown in Table 4, it was possible to state the share of variables in the 

discrimination of mortars with different fillers. It is possible to determine the nature of this 
discrimination for each canonical root after generating table 5 containing the so-called 
canonical means. On the basis of that, it can be concluded that the first discriminatory 
function differentiates mainly mortars obtained with the use of rubber waste. The canonical 
mean in this case is different from that calculated for the remaining fillers. The same is true 
for the second function, but the amount of this discrimination is much smaller, which is 
in line with the results presented in Table 4.  

Table 5. Average values of the discriminant functions. 

Group 
Average canonical variables 

Root 1 Root 2 
P -1.30600 -0.516036 
LECA -1.06778 0.551755 
RW 2.37378 -0.035719 

This interpretation is also confirmed by the scatterplot obtained for both discriminant 
functions, shown in Figure 3. This is a graph of non-standardized values for Root 2 relative 
to Root 1. Mortars containing rubber wastes are placed on the chart much more to the right, 
so the first discriminant function mainly distinguishes this type of mortar from the other 
two. The second function marginally better discriminates mortars containing expanded clay 
– for them the second canonical function takes the most positive values (greater than -0.5, 
while for other mortar samples with perlite filler, these values are less than -0.5). 
Discrimination in this case, however, is much less pronounced (0.551755<<2.37378) than 
in the case of the first function separating the collection of mortar samples obtained as 
a rubber composite. 
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Fig. 3. Scatterplot for both discriminant functions. 

One of the purposes of discriminant function analysis is to allow the investigator to classify 
cases. The Statistica program makes it possible to generate a table with so-called coefficients of 
classification functions (table 6), which are not the same as discriminatory functions.  

Table 6. Parameters defining classification functions K1, K2 and K3. 

Variable 
Classification functions; Grouping 

variable: Modifier type 
P LECA RW 

Flexural strength, MPa -0.018 0.617 -0.389 
Bulk density, g/cm3 448.906 456.971 511.790 
Compressive strength, MPa -2.859 -3.078 -3.384 
Constant (free term) -286.428 -296.983 -351.736 

Classification functions are calculated for each group and can be used directly to 
classify cases. A given case can be classified in the group for which it has the highest 
classification value. The calculated coefficients contained in Table 6 were used to create the 
linear classification functions K1, K2 and K3. Equations presenting classification functions 
take the form:  

K1 = -286.428 - 0.018* Flexural strength + 448.906* Bulk density + 
- 2.859* Compressive strength (3) 

K2 = -296.983- 0.617* Flexural strength + 456.971* Bulk density + 
- 3.078* Compressive strength (4) 

K3 = -351.736 - 0.389* Flexural strength + 511.790* Bulk density + 
- 3.384* Compressive strength (5) 
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- 3.384* Compressive strength (5) 

The results of the accuracy of the classification for the training set (45 cases) are 
summarized in Table 7. The classification matrix presented in this table contains information 
on the number and percentage of objects (cases) correctly classified in each group. 

Table 7. Classification matrix of cases in the training set. 

Class 

Classification matrix 
Classification: Rows (Observed) Columns (Predicted) 
(Test analysed) 
Percentage 

correct 
P 

p=0.3333 
K 

p=0.3333 
G 

p=0.3333 
P 73.33333 11.00000 4.00000 0.00000 

LECA 73.33333 4.00000 11.00000 0.00000 

RW 80.00000 0.00000 3.00000 12.00000 

Total 75.55556 15.00000 18.00000 12.00000 

The designated functions K1, K2 and K3 make it possible to classify new cases. 
For each case, the values of three classification functions were calculated. The mortar 
containing the filler (case) is included in the group for which the value of the classification 
function is the largest. To check how well the designated classification functions work, the 
cases from the drawn test set were classified (column 5 in Figure 1), i.e. those that were not 
used to calculate the coefficients of the K1, K2 and K3 functions (cross-checking). 
The results obtained are summarized in Table 8.  

Table 8. Classification Matrix cases in the test set. 

Class 

Classification matrix 
Classification: Rows (Observed) Columns (Predicted) 
(Test for cross-check) 
Percentage 

correct 
P 

p=0.3333 
K 

p=0.3333 
G 

p=0.3333 
P 66.6667 2.00000 1.00000 0.00000 

LECA 66.6667 1.00000 2.00000 0.00000 

RW 100.0000 0.00000 0.00000 3.00000 

Total 77.7778 3.00000 3.00000 3.00000 

The data contained in table 8 show that the average percentage of correctly classified 
mortars is slightly larger than the result obtained for the training set and amounts to almost 
78% of the total mortar tested. Usually, the correctness of the classification is better for the 
"training" set than for the "tester" set. In this case, the obtained results point to the opposite 
conclusion, which is associated with the verification of the prognosis capability of the 
generated classification functions on the set of data drawn from the research sample.  
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4 Conclusions 
The discriminant analysis method described in the article makes it possible to successfully 
classify mortars obtained using three different types of aggregates, i.e. perlite, expanded 
clay and rubber waste granulate, which are a partial substitute for quartz sand.  

The analysis allows us to draw the following conclusions: 
• Bulk density is the main variable that allows discrimination of mortars with different 

types of filler. 
• Two discriminant functions can be interpreted (both are statistically significant 

(p <0.05)). 
• The first discriminant function is influenced most by bulk density and compressive 

strength, although the contribution of flexural strength to this function is also important. 
The second function is determined mainly by strength variables, and to a lesser extent its 
volume is influenced by bulk density. 

• The first function is certainly "the most important", because 93% of the entire 
discriminatory power is explained by it. 

• Mortars containing rubber waste constitute a well-isolated collection, and its roots are 
placed on the scatterplot much more to the right, so the first discriminant function 
distinguishes mainly this type of mortar from the other two. The second function 
discriminates better in the case of mortars containing expanded clay – and the values of 
the second canonical function calculated for them are mostly positive, whereas the 
calculated values for perlite mortars are negative. 

• The designated functions K1, K2, K3 allow classification of new cases belonging to the 
test set that was not used to calculate the function coefficients.  

• The average percentage of correctly predicted mortar class is slightly larger than the 
result obtained for the training set and amounts to almost 78% of the total mortar tested. 
This is the result of receiving a sample for cross-checking using a random method. 
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