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Abstract. The paper deals with the lateral buckling problem of a freely 

supported wooden strip with a constant narrow cross section, loaded with a 

local force in the middle of the span. A differential equation is given for 

cases when the force is applied out of the gravity section center. Strain-

energy method was used in the study of beam lateral buckling. In the case 

when the load is applied in the center of gravity, problem comes down to a 

generalized characteristic equation. The correlation between the magnitude 

of the critical force and the application point of the load was obtained. The 

linear approximating function was identified for the indicated dependence. 

The obtained results are compared with an analytical solution using the 
Bessel functions and a numerical iterative method. 

1 Introduction 

It is known that a beam with a narrow rectangular cross-section, which bends in its 

plane under local load A applied in the gravity center of the middle cross section, can 

laterally buckle at a known load value (Fig. 1.). 

 

Fig. 1. The plain bending analytic model. 
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2 Results 

An arbitrary section 𝑛 − 𝑚 with coordinates 𝜉, 𝜂, 𝜁 is considered. The deformation of the 

strip is determined by the two components of the displacement 𝑢 𝑎𝑛𝑑 𝑣, as well as the 

angle 𝛽, by which it turns. The flection values of the strip central axes in the 𝑋𝑍 𝑎𝑛𝑑 𝑌𝑍 

planes are shown in Fig. 1. They will be 
𝜕2𝑢

𝑑𝑧2
 and 

𝜕2𝑣

𝑑𝑧2
, respectively. It is possible to assume 

that for a small angle 𝛽 the flection in the planes 𝜉, 𝜂, 𝜁 has the same values. The principal 

axis rotation angle per unit length will be 
𝜕𝛽

𝑑𝑧
. Then the equilibrium equation has the 

following form [4,6,7]: 

{
  
 

  
 

𝐵2

𝐵1 ∙
𝜕2𝑢

𝑑𝑧2
= 𝑀𝜂;

∙
𝜕2𝑣

𝑑𝑧2
= −𝑀𝜉; 

С ∙
𝜕𝛽

𝑑𝑧
= 𝑀𝜁;

 

 

 

(1) 

Here: С = 𝐺
𝑏3ℎ

3
 (1 − 0,630

ℎ

𝑏
), 𝐵1 = 𝐸

𝑏3ℎ

12
, 𝐵2 = 𝐸

ℎ3𝑏

12
 are the torsion and binding 

stiffness, respectively. 𝑀𝜂, 𝑀𝜉 , 𝑀𝜁 −  moments about the respective axes of forces applied 

to the strip part lying to the right of 𝑚− 𝑛 cross section. 

It should be noted that the moments are considered positive when act in the same 

directions as were indicated for positive rotations about the axes 𝜉, 𝜂 𝑎𝑛𝑑  𝜁. 

For the further derivation of resolving equations, expressions are necessary for the 

cosines of the angles between the coordinate axes 𝜉, 𝜂 , 𝜁 and 𝑋, 𝑌, 𝑍. 

Assuming the displacement values of 𝑢 , 𝑣 and 𝛽 are very small, the cosines required for 

the calculations will take the following values: 

Table 1.  The cosines values between the coordinate axes 𝜉, 𝜂 , 𝜁 and 𝑋, 𝑌, 𝑍. 

Coordinate axes 𝑋 𝑌 𝑍 

𝜉 1 𝛽 −
𝜕𝑢

𝜕𝑧
 

𝜂 −𝛽 1 −
𝜕𝑣

𝜕𝑧
 

𝜁 
𝜕𝑢

𝜕𝑧
 

𝜕𝑣

𝜕𝑧
 1 

When the equilibrium of the right side of the strips cross section 𝑚 − 𝑛 is considered, it 

can be seen that the forces acting on this part come down to the vertical force 
𝐹

2
 and the 

reactive torque 
𝐹

2
∙ 𝛿 acting at point B. 

Moments about the axes with a beginning at the D point center of the cross section and 

parallel to the axes 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 will be as follows: 

𝑀𝑥 = −
𝐹

2
(
𝑙

2
− 𝑧) ;   𝑀𝑦 = 0;   𝑀𝑧 = 

𝐹

2
(𝛿 − 𝑢) 

where 𝛿 is lateral deflection in the middle of the beam, and 𝑢 is deflection in the  𝑚 − 𝑛 

cross section. 

Using the cosine table (Fig.2) the following can be obtained: 
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{
 
 

 
 𝑀𝜉 = −

𝐹

2
(
𝑙

2
− 𝑧) −

𝐹

2
(𝛿 − 𝑢)

𝜕𝑢

𝜕𝑧
;  

𝑀𝜂 =
𝐹

2
(
𝑙

2
− 𝑧) 𝛽 −

𝐹

2
(𝛿 − 𝑢)

𝜕𝑣

𝜕𝑧
; 

𝑀𝜁 = −
𝐹

2
(
𝑙

2
− 𝑧)

𝜕𝑢

𝜕𝑧
−
𝐹

2
(𝛿 − 𝑢);

 

 

 

(2) 

After substituting expression (2) into (1), the following differential equations can be 

obtained: 

{
  
 

  
 𝐵1 ∙

𝜕2𝑢

𝑑𝑧2
=
𝐹

2
(
𝑙

2
− 𝑧) 𝛽 −

𝐹

2
(𝛿 − 𝑢)

𝜕𝑣

𝜕𝑧
; 

𝐵2 ∙
𝜕2𝑣

𝑑𝑧2
=
𝐹

2
(
𝑙

2
− 𝑧) +

𝐹

2
(𝛿 − 𝑢)

𝜕𝑢

𝜕𝑧
; 

С ∙
𝜕𝛽

𝑑𝑧
= −

𝐹

2
(
𝑙

2
− 𝑧)

𝜕𝑢

𝜕𝑧
−
𝐹

2
(𝛿 − 𝑢);

 

 

 

(3) 

After eliminating the displacement 𝑢 from the first and third equations, and assuming 

that 𝑣 = 0 due to its smallness, it can be obtained: 

𝜕2𝛽

𝑑𝑧2
+

𝐹2

4𝐵1С
(
𝑙

2
− 𝑧)

2

∙ 𝛽 = 0. (4) 

A numerical solution in a finite-difference model and a solution in infinite series gives 

the result of the critical force [3,10]: 

𝐹𝑐𝑟 =
16,93√𝐵1С

𝑙2
; (5) 

In many cases, it is possible to use the energy method with great advantage for the study 

of beam lateral buckling. In order to demonstrate the use of this method, the case presented 

in Fig.1 should be considered again. 

When the beam buckles to the side, the deformation energy of the beam increases, since 

the bending of the beam in the load application plane is accompanied by a bend in the 

transverse direction and torsion about the longitudinal axis. At the same time, the load 

application point decreases and the load does some work. The critical load value is now 

determined according to the condition that this work is equal to the lateral bending 

deformation energy combined with the torsional deformation energy. In this case, we can 

neglect a small change in the beam bend energy in its plane, which occurs during buckling. 

This equals the previous assumption made when creating differential equilibrium equations, 

which stated that the plane flection of the wall is infinitely small and can be neglected. The 

result obtained using this way is quite accurate when the stiffness of the beam in the wall 

plane is infinitely large, and it is fairly correct if this stiffness is very large compared to the 

stiffness in the transverse direction, which is the usual practical example. 

Conventional formulas can be used in order to determine the strain energy of bending 

and torsion. In this case, taking into account the symmetry of the bulking beam shape (Fig. 

1), an increase in the deformation energy due to buckling can be obtained in the following 

form: 

𝐸 = 𝐵1 ∙ ∫ (
𝜕2𝑢

𝜕𝑧2
)

2

𝑑𝑧 + 𝐶 ∙

0,5𝑙

0

∫ (
𝜕𝛽

𝜕𝑧
)
2

𝑑𝑧

0,5𝑙

0

 
 

(6) 
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In order to determine the 𝐹 load pulldown during lateral buckling, the element of the 

beam longitudinal axis at the point D (Fig. 1) should be considered. If the cross section 

𝑚 − 𝑛 is considered as fixed, then due to the plane bending of this element the beam end B 

will describe an infinitely small arc in the plane: 

𝜕2𝑢

𝜕𝑧2
(
𝑙

2
− 𝑧) 𝑑𝑧, (7) 

vertical component of which equals the following: 

𝛽
𝜕2𝑢

𝜕𝑧2
(
𝑙

2
− 𝑧) 𝑑𝑧, (8) 

By changing z from 0 to l/2 and summing up the vertical components stated in (8), the 

decrease of the load point F can be obtained due to lateral buckling of the beam as an 

integral: 

∫ 𝛽
𝜕2𝑢

𝜕𝑧2
(
𝑙

2
− 𝑧) 𝑑𝑧

0,5𝑙

0

 (9) 

The equation for determining the critical load becomes as follows: 

𝐹 ∙ ∫ 𝛽
𝜕2𝑢

𝜕𝑧2
(
𝑙

2
− 𝑧) 𝑑𝑧 =

0,5𝑙

0

𝐵1 ∙ ∫ (
𝜕2𝑢

𝜕𝑧2
)

2

𝑑𝑧 + 𝐶 ∙

0,5𝑙

0

∫ (
𝜕𝛽

𝜕𝑧
)
2

𝑑𝑧

0,5𝑙

0

 (10) 

After substituting the value, which follows from the first equation (3) in place of 
𝜕2𝑢

𝜕𝑧2
: 

𝐹2

4𝐵1
∙ ∫ 𝛽2 (

𝑙

2
− 𝑧)

2

𝑑𝑧 =

0,5𝑙

0

𝐶 ∙ ∫ (
𝜕𝛽

𝜕𝑧
)
2

𝑑𝑧

0,5𝑙

0

 (10) 

In order to determine the critical load F value, it is necessary to adopt a suitable 

analytical expression for the torsion angle 𝛽 that satisfies the conditions at the ends of the 

beam, and substitute it into equation (10). The general expression for 𝛽, which satisfies the 

conditions at the ends, can be adopted in the form of a trigonometric series: 

𝛽 = 𝑎1𝑐𝑜𝑠
𝜋𝑧

𝑙
+ 𝑎2𝑐𝑜𝑠

3𝜋𝑧

𝑙
+ 𝑎3𝑐𝑜𝑠

5𝜋𝑧

𝑙
+ ⋯ (11) 

Using only the first term of this series for 𝛽 as the first approximation, then substituting 

it into equation (10) and integrating, the following can be obtained: 

𝐹𝑐𝑟 =
17,2√𝐵1С

𝑙2
; (12) 

The numerical solution of the finite difference model and the solution obtained by using 

the energy method gives a 1.5% difference in the results of the crippling load. If the first 

two terms of the series (11) are taken as the second approximation and the constants 𝑎1 and 

𝑎2 are adopted to make minimal 𝐹𝑐𝑟, the error will be less than 0.1%. 

To sum up, the last example shows that the energy method can be successfully applied 

for studying lateral buckling of beams. Over and above, in the case of using the energy 

method the complex integration of differential equations by the method of infinite series is 

replaced by calculation of simple integrals included in equation (10), and a relatively 

simple expression for 𝛽 usually allows to obtain 𝐹𝑐𝑟 with an accuracy sufficient for 
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practical purposes. Usually 𝐹𝑐𝑟 determined by the energy method is always higher than its 

true value. 

The value of the crippling load 𝐹𝑐𝑟 depends on its application point. It is obvious that 

the load application above the center of the cross section reduces its critical value, and 

application below the center produces the opposite effect. The power of this effect is easy 

to obtain by using the energy method; it is only necessary to take into account the 

additional pulldown of the load 𝐹 due to lateral buckling of the beam caused by the rotation 

of the middle cross section. If we take 𝛽0 − the rotation angle and 𝑎 − the vertical distance 

between the load application point and the cross section center (positive when it is at the 

top), then the additional load decrease will be: 

𝑎 ∙ (1 − cos 𝛽0) ≈
𝑎𝛽0

2

2
 (13) 

Then instead of the equation (10) the following can be obtained: 

𝐹
𝑎𝛽0

2

2
+
𝐹2

4𝐵1
∙ ∫ 𝛽2 (

𝑙

2
− 𝑧)

2

𝑑𝑧 =

0,5𝑙

0

𝐶 ∙ ∫ (
𝜕𝛽

𝜕𝑧
)
2

𝑑𝑧

0,5𝑙

0

 (14) 

If 𝑎 → 0, then the first left side member of (14) is small and can be substituted by the 

value (5) for 𝐹. Thus, the following approximate formula is obtained: 

𝐹𝑐𝑟 =
16,93√𝐵1С

𝑙2
∙ (1 −

3,48𝑎

𝑙
√
𝐵1
𝐶
) ; 

3 Conclusion 

A comparison was made with the results obtained by using the energy method with the 

iteration algorithm and the analytical solution of A.S. Volmira based on Bessel functions 

(Table 2). 

Comparison of the results obtained by the means of iterative algorithm and an analytical 

solution of A.S. Volmira [10] based on the Bessel functions was made (Table 2). 

Table 2. Bessel functions. 

Above the gravity center 

𝑎 0 0.03 0.143 0.293 0.544 

K 

(Chepurnenko) 

16.94 
15.9857  12.7765  9.6056  6.3512 

K (Volmir) 16.94 16.0  12.8  9.6  6.4 

K (authors) 16.93 15.9677  12.7265  9.5956  6.3498 

Below the gravity center 

 0  -0.069  -0.166  -0.271  -0.396  -0.562  -0.815 

K 

(Chepurnenko) 
16.94  19.2151  22.3576  25.5395  28.7354  31.9455  35.1239 

K (Volmir) 16.94  19.2  22.4  25.6  28.8  32.0  35.2 

K (authors) 16.93 19.2091  22.378  25.5475  28.7732  31.9832  35.1443 

The coincidence of the results indicates their reliability. 
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