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Abstract. The modelling of fracture formation and propagation in geo-materials is a subject of interest in 
several problems and applications. In this work, finite elements with high aspect ratio are used to study the 
hydraulic fracture process in the context of conventional continuum constitutive (stress-strain) relationships 
based on the damage theory. The deformable porous material is solved in a coupled manner by considering 
a fully hydro-mechanical approach. The adopted approach is explained and validated against analytical and 
numerical solutions.

1 Introduction
The formation and propagation of discontinuities in 
porous media (i.e., in the form of fractures, cracks or 
fissures) correspond to a relevant and complex 
phenomena of interest for different engineering 
applications, some of them discussed as follows. For 
example, the potential migration of gas and/or pollutants 
flow through discontinuities can seriously jeopardize the 
performance of repositories for high-level nuclear waste 
and other type of barrier systems. The mechanical 
integrity of the geomaterials (i.e. rocks and soils) 
comprising a geological system is a key component in 
several problems involving energy production. For 
instance, the injection of fluids (e.g. CO2, H2O) at very 
high pressure is generally necessary to enhance oil 
production from reservoirs. This technique may trigger 
the formation of fractures and can also reactivate pre-
existing geological faults [1].  

Furthermore, in unconventional fields oil and/or gas 
are trapped in very low porosity/permeability rocks (e.g., 
gas/oil shales) and special recovery operations (outside 
the conventional techniques) are required to produce 
hydrocarbons for this type of system. Hydraulic 
fracturing is the most common enhanced recovery 
technique used in shale gas fields and consists in 
injecting engineered fluids at very-high pressures into a 
reservoir via injection wells [e.g.2,3]. The high 
pressurized fluid breaks the rocks, forming the fractures 
and allowing the release of the trapped oil and gas. 
Similar techniques are required to assist oil production 
from recently found very-deep oil reservoirs. The 
formation and propagation of drying cracks in soils is 
also a complex problem involving the presence of 
evolving discontinuities in geomaterials [4]. 

The numerical modelling of developing 
discontinuities, as the ones in the engineering problems 
discussed above, it is a quite challenging problem that 

involves the coupling of several physical processes. One 
of the first theoretical/analytical approaches dealing with 
the formation of fractures correspond to the so-called 
PKN [2] and KGD models [3]. Both of them consider 
simplifying assumptions, and therefore, they are 
applicable only when specific conditions and hypotheses 
are considered. As for the numerical modelling for 
dealing with this type of problem, several simulations 
techniques have been developed to investigate the 
formation of fractures. As for example, models based on 
the boundary element method [5,6]; extended finite 
elements (X-FEM) [7,8,9]; and also zero-thickness 
interface elements [10]. 

In this work, a finite-element (FE) based framework 
incorporating high aspect ratio (HAR) elements is used 
to simulate the formation and propagation of fractures in 
geo-materials. A key component of the proposed 
approach is a tensile damage constitutive model that 
incorporates the characteristic length of the problem, 
allowing the regularization of the numerical solution of 
geomaterials with softening behaviour. The proposed 
technique is general and can be potentially used to tackle 
any of the engineering problems discussed above.  In this 
paper is verified for the near- K  solution of the leak off–
toughness dominated regime [3, 4] and validated against 
the numerical results obtained by Carrier and Granet 
[10]. 

This paper is organized as follows, first the main 
aspects of the adopted approach is presented; then the 
main equations of the framework are introduced; 
afterwards the application case is studied; and finally the 
paper closes with main conclusions of this research. 

2 Adopted approach
The proposed framework is based on the finite element 
program CODE_BRIGHT [11], which is a powerful 
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platform capable of dealing with coupled Thermo-
Hydro-Mechanical (THM) processes and interactions 
typically observed in problems in geological media 
involving simultaneous multiphysics actions. A 
multiphase/multispecies mathematical formulation 
consisting on three main set of equations is adopted, 
namely: i) balance equations (e.g., mass balance of 
species, balance of internal energy, and momentum 
balance); ii) constitutive equations (e.g., Darcy’s and 
Fourier’s laws, stress-strain relationship), and iii) 
equilibrium restrictions (e.g., Henry’s law). More details 
can be found elsewhere [11]. In this work, the following 
main phenomena are considered: water flow (via liquid 
phase advection) and geomaterials deformation 
controlled by effective stresses (including the influence 
of load history). This formulation has been widely 
validated and applied to solve different coupled THM 
problems in geological media [1,11,12].  

CODE_BRIGHT was developed to deal with 
continuous porous media and therefore was not able to 
tackle problems involving the formation and propagation 
of discontinues. In this work, CODE_BRIGHT was 
upgraded to simulate evolving fractures by implementing 
in it the approach suggested by Manzoli et al. [13,14,15] 
that is based on the inclusion of HAR finite elements 
with tailored mechanical and hydraulic constitutive 
models to represent the behaviour of discontinuities. The 
mechanical behaviour of the HAR elements is controlled 
by a tensile damage model, while the hydraulic response 
depends on the fracture aperture through the well know 
cubic law. As for the regular finite elements of the mesh 
(i.e. the bulk elements), the mechanical behaviour can be 
described by means of traditional constitutive models 
(e.g. a linear/non-linear elastic, or elasto-plastic models), 
while the hydraulic behaviour is modelled by the 
Darcy’s generalized law.  

This numerical technique allows to explicitly include 
the formation and propagation of fractures in the 
numerical analysis. CODE_BRIGHT uses GiD [16] or 
ParaView [17] to generate the mesh and to prepare all 
the information required for a finite element simulation. 
The following section presents the governing equations 
used to model the hydraulic fracturing problem. 

3 Governing equations 
The governing equations comprise the balance 
equations, constitutive relationship, and phase laws, 
together with boundary and initial conditions of the 
problem. The next sections show the main expressions 
used to model the fracturing phenomenon. 

3.1 Balance equations 

The equation of mass balance solid that controls porosity 
changes can be expressed as: 
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where   denotes porosity, s  is the solid density and u  
is the velocity vector. 
 The momentum balance equation for the porous 
material neglecting inertial terms is given by: 

  σ g 0  (2) 

where σ  is the total stress vector, g  is the gravity vector 
(i.e. gT={0,0,-g}) and   is the density of the porous 
medium.  
 The water mass balance equation can be written as: 
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where l  is the water density and lq  is the liquid 
Darcy’s velocity vector. 

3.2 Constitutive equations 

The mechanical constitutive models are introduced first 
and the hydraulic law afterwards. 

3.2.1  Mechanical constitutive equation 

The mechanical behaviour of the material is ruled by the 
effective stresses ( 'σ ) expressed in terms of total 
stresses and water pressure by: 

' lb p σ σ m  (4) 

where  T 1,1,1,0,0,0m =  is an auxiliary vector, lp  is 
the liquid pressure and b  is the Biot’s coefficient, 
defined as 

1
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with K  and sK  denoting the bulk moduli of the porous 
medium and the solid phase, respectively. 
 A scalar tension damage model is adopted to tackle 
the dissipative process related to the formation of 
fractures. Tab. 1 contains the main equations associated 
with the damage model, which, as mentioned before, 
controls the behaviour of the HAR elements. 

Table 1. Continuum tensile damage model. 

Constitutive equation ' (1 ) :dσ C   

Damage criterion 0nn r     
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 In Tab. 1,   0,1d   is the damage variable, C  is the 
elastic matrix,   is the strain vector,  nn  is the stress 
component normal to the base of the element, r  is the 
internal variable, tf  is the tensile strength of the rock 
and fG  is the fracture energy. 
 In this work it is assumed that the mechanical 
behaviour of the bulk elements is controlled by a linear 
elastic model.   

3.2.2  Hydraulic constitutive equations 

It is assumed that Darcy’s law governs the water flow in 
both, the solid materials and the discontinuities: 

( )l l l
l

p 

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kq g  (6) 

where k  is the intrinsic permeability tensor of the 
porous medium and l  is the water dynamic viscosity.  
 The permeability of the HAR-FE is computed in 
terms of the crack aperture (or width) by means of the 
well-known cubic law and the solid elements through the 
Kozeny-Carman equation in terms of the porosity. 

4 Applications 
The storage-toughness dominated regime of the 
hydraulic fracturing process is investigated in this 
section by using the proposed numerical technique. The 
fracture is induced by the injection of an incompressible 
Newtonian viscous fluid at a constant rate 0.5lq   kg/s. 

The domain of the problem is 45 x 60m. An in situ 
vertical stress of 5.0o    MPa is considered. The 
finite element mesh contains 4666 nodes and 9264 
elements (see Fig. 2) and the material properties of the 
porous medium are listed in Tab. 2. 

Table 2. Properties of the rock. 

Young’s modulus 317.0 10  MPa 

Poisson’s ratio 0.2 

Fracture Energy 120 N/m 

Tensile strength 1.25 MPa 

Biot’s coefficient 0.75 

Porosity 0.2 
Bulk modulus of the 
solid phase 37785 MPa 

Water dynamic viscosity 0.0001 Pa s 

Two cases were considered in order to study the 
effect of the isotropic (kx = ky = 5.0x10-15 m2) and 
orthotropic (kx =1.0x10-16 m2, ky = 5.0x10-15 m2) rock 
permeability on fracture aperture, length and contour of 

pressure. The parameters of the near- K solutions 
(analytical results) were reported in Carrier and Granet 
[10].  

Fig. 1 presents the results in terms of the aperture for 
the 1D and 2D diffusion cases associated with the 
orthotropic and isotropic rock permeability conditions, 
respectively, together with the analytic solution 
(available for the ‘1D-diffusion’ case only). Fig. 2 
presents the comparisons in terms of the predicted 
fracture length. In general terms, a very satisfactory 
performance of the proposed method incorporating HAR 
finite elements is observed when compared against the 
numerical and analytic solutions reported in Carrier and 
Granet [10].  

 
Fig. 1. Comparison between the fracture aperture obtained with 
HAR finite elements and the numerical and analytical solutions 
reported in Carrier and Granet [10]. 

Fig. 2. Comparison between the fracture lengths obtained with 
HAR finite elements and the numerical and analytical solutions 
reported in Carrier and Granet [10]. 

The contour of liquid pressure at 100t  s is shown 
in Figures 3 and 4. The unidimensional flow hypothesis 
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is valid for the 1D-diffusion case because the fluid flow 
does not goes further than the fracture tip [10]. On the 
other hand, in the 2D-diffusion case, the flow is clearly 
bi-dimensional, as show in these figures.  

Fig. 3. Contour of liquid pressure for 1D diffusion at 100t  . 

Fig. 4. Contour of liquid pressure for 2D diffusion at 100t  . 

5 Conclusions 
In this work, a numerical approach capable of modelling 
the coupled displacement and pressure field problems in 
porous media with evolving discontinuities is suggested. 
The main equations and assumptions of the proposed 
framework are presented and discussed. The predictions 
obtained with the new approach are compared against 
already published analytic and numerical solutions 
involving the formation and propagation of fractures in 
geomaterials. The comparisons were very satisfactory, in 
general terms, showing the ability of the model to 
replicate the main trends and results involved in this type 
of problem. This is very promising and simple numerical 

technique that allows extending classical finite elements 
formulations and codes to deal with evolving 
discontinuities in geomaterials.    
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