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Abstract. When saturated granular materials which are dilative in nature are subjected to the undrained
deformation, their strength increases due to the generation of negative excess pore pressure. This phe-
nomenon is known as dilative hardening and can be witnessed in saturated dense sand or rocks during very
fast loading. However, experimental evidence of undrained biaxial compression tests of dense sand shows a
limit to this dilative hardening due to the formation of shear bands. There is no consensus in the literature
about the mechanism which triggers these shear bands in the dense dilative sand under isochoric constraint.
The possible theoretical reasoning is the local drainage inside the specimen under the globally undrained
condition, which is challenging to be monitored experimentally. Hence, both incept of localisation and
post-bifurcation of the saturated undrained dense sand demand further numerical investigation. Pathologi-
cal mesh dependency hinders the ability of the finite element method to represent the localisation without
advanced regularisation methods. This paper attempt to provide a macroscopic constitutive behaviour of the
undrained deformation of the saturated dense sand in the presence of a locally drained shear band. Discon-
tinuation of dilatant hardening due to partial drainage between the shear band and the adjacent material is
integrated into the constitutive model without changing governing equilibrium equations. Initially, a clas-
sical bifurcation analysis is conducted to detect the inception and inclination of the shear band based on
the underlying drained deformation. Then a post-bifurcation analysis is carried out assuming an embedded
drained or partially drained shear band at gauss points which satisfy bifurcation criterion. The smeared
shear band approach is utilised to homogenise the constitutive relationship. It is observed that the dilatant
hardening in the saturated undrained dense sand is reduced considerably due to the formation of shear bands.

1 Introduction

Dilatant materials cause a reduction in pore pressure dur-
ing undrained plastic shearing. This leads to an increase in
effective stress which is popularly known as dilative hard-
ening in saturated soils and rocks. If the bifurcation crite-
rion is regarded as the singularity of the undrained acoustic
tensor, this dilative hardening phenomenon can delay the
instability. Hence the strengthening can continue until the
tendency to dilate ceases at the critical state. The only
exception is when the suction reduces enough to reach
the cavitation pressure, then the soil is desaturated, lift-
ing the strict isochoric constraint. This leads to the ratio-
nale that under large hydrostatic pressure in sub-sea con-
ditions, dilative silty sand can possess very high undrained
strength. However, [1],[2] showed using the perturbation
analysis that homogeneous undrained deformation of dila-
tive materials can be potentially unstable when the con-
dition for localisation is met in terms of the underlying
drained response. On the contrary, [3] states that in the ab-
solute absence of inhomogeneities, no shear band can oc-
cur even though the drained localisation criterion is met.
In practical circumstances, the specimens are not homo-
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geneous. A small imperfection can trigger local drainage.
This phenomenon can possibly terminate the dilative hard-
ening leading to a localised deformation in the globally
undrained dense sand.

2 Literature Review

The strain localisation in the undrained dilative granu-
lar material is a subject of controversy. Observations of
the experimental investigations carried out over the past
few decades are not sufficient to reach a unique consen-
sus. This is mainly due to the fact that coupled local-
isation is objective of the size of the specimen, aspect
ratio, grain size, loading rate, material properties (fric-
tion, dilation, permeability) and initial conditions. [4] re-
ported that the onset of shear band formation was delayed
in the undrained dense sand until the cavitation, which
was governed by the initial back pressure. [5] reported
the evidence of locally drained shear bands despite global
undrained conditions.

Due to the lack of experimental evidence, most stud-
ies on the locally drained shear bands in the globally
undrained sand are limited to theoretical and numerical in-
vestigations. [6], [7] and [8] presented the concept of the
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locally drained shear band under globally undrained con-
ditions. Only this type of instability is possible for dila-
tive dense sand [7, 8]. A local volume change is always
accompanied by a water flow associated with a pore pres-
sure gradient. This means there should be a jump in the
volume change across the shear band when the pore pres-
sure is dissipated.

The onset of the shear band is dictated by the rate of
local volume change. [7] theoretically showed it is most
likely that a shear band initiates with a minimum deviation
from the isochoric constraint, after the peak friction ratio.
Because in this region, the jump in local volume change
required to trigger a dilative shear band is smaller. Hence,
a small heterogeneity in the sample can trigger localisa-
tion. On the other hand, if the isochoric constraint is lifted
due to cavitation, full drainage is possible, hence the local-
isation can occur very early [7]. Therefore, in most experi-
mental conditions, the internal fluid flow is suppressed and
cavitation can precede that. Moreover, there are possible
time and scale effects which prevent local drainage in dis-
placement controlled tests with impermeable boundaries
[4, 6].

Modelling the internal drainage within the finite el-
ement framework is not very reliable. Generally, fluid
migration happens within the pore volume which has a
much smaller scale than the element size. Several attempts
have been made to allow the internal drainage within the
elements. [3] developed an embedded shear band ap-
proach which allows strong discontinuities within finite
elements.[9] augmented the constitutive relations govern-
ing the macroscopic undrained response in the presence of
a locally drained shear band. This method captured the ex-
change of fluid inside the element. However, these strate-
gies do not recognise the time dependence of pore fluid
diffusion.

3 Objective

The objective of this study is to develop a phenomeno-
logical constitutive relationship for the globally undrained
dense sand, which encompasses a fully or partially drained
shear band. It should be able to capture the internal fluid
movements and volume changes between the shear band
and intact material taking both the rates of loading and the
thickness of the band into consideration. The macroscopic
strength is decided by the interplay between the excess
pore pressure generation and diffusion at the grain scale.
Thus, the influence of underlying micro-kinematics can
be apprehended with sufficient accuracy without changing
equilibrium equations.

The hypothesis of this development is illustrated in
Figure 1. Figure 1(a) shows a globally undrained biax-
ial compression specimen with an extra-fine mesh. A lo-
cally drained shear band has been propagated in it due to
the weak material points embedded at the bottom left cor-
ner. Figure 1(b) shows a single element with the same di-
mensions and boundary conditions. Impermeable bound-
aries are presumed in both tests to maintain the globally
undrained and constant volume condition. The aim is to
replicate the mechanical response of the extra-fine mesh

by a phenomenological constitutive relationship of the sin-
gle element. The assumption here is that the finite element
analysis with an extremely fine mesh can reproduce the
actual local drainage in dense sand. This is the most plau-
sible alternative due to the lack of experimental evidence.

Fig. 1. Globally undrained biaxial compression tests with (a) an
extremely fine mesh and (b) the equivalent single element

4 Numerical Implementation

The details of mathematical formulations derived for the
embedded shear band approach is described in this sec-
tion. A shear band with a finite thickness is assumed to
occur in the single element/or material point after it has
reached the bifurcation criterion (Figure 1(b)). After bi-
furcation point, the material response no longer can be ac-
curately described by a continuum constitutive model. The
homogeneity might be valid separately in each region (in-
side and outside the band) but not as a whole. The mode
of deformation inside and outside the shear band take dif-
ferent forms regardless of the boundary conditions of the
overall element. Therefore, to accurately capture the post-
bifurcation response, two separate stress-strain relation-
ships are required to describe the behaviour inside and out-
side the localisation zone [10]. The average macroscopic
response is calculated based on the volume averaging pro-
cedure following works of [9], [10]. Finally, the aver-
aged macroscopic stress is utilised to solve the equilib-
rium equations according to global boundary conditions.
Hence, the evolution of underlying micro-deformation dic-
tates the macro response. Main formulations of this em-
bedded shear band approach are summarised below.

The numerical investigation is carried out using the fi-
nite element software ABAQUS with an user-defined sub-
routine. The onset of bifurcation and the inclination angle
of the shear band should be calibrated for the extra-fine
mesh for different loading rates. The bifurcation is de-
cided upon the first time the drained acoustic tensor be-
comes zero in any material point in the extra-fine mesh.
The shear band angle is assumed to be a constant although
it slightly changes during the deformation.

All constitutive relations are developed assuming a
plane strain condition. The homogeneous deformation
prior to bifurcation is described with reference to the
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furcation point, the material response no longer can be ac-
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overall element. Therefore, to accurately capture the post-
bifurcation response, two separate stress-strain relation-
ships are required to describe the behaviour inside and out-
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response is calculated based on the volume averaging pro-
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aged macroscopic stress is utilised to solve the equilib-
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prior to bifurcation is described with reference to the

global coordinate system x-y. For clarity, the post-
bifurcation analysis is attached to a local coordinates sys-
tem n-t which is aligned with the shear band. All calcu-
lations are conducted in local coordinates until they are
transformed back to global coordinates. The transforma-
tion matrix is defined as

T =


cos2 θsb sin2 θsb 2 sin θsb cos θsb

sin2 θsb cos2 θsb −2 sin θsb cos θsb

− sin θsb cos θsb sin θsb cos θsb cos2 θsb − sin2 θsb


(1)

The stress and strain measures after the transformation are
denoted as

σ′i j =
[
σ′nn σ′tt σ

′
nt

]T
(2)

dεi j =
[
dεnn dεtt dεnt

]T
(3)

A single material point is assumed to be consist of two
sub-elements made out of the shear band and intact mate-
rials. Both share the same material properties but different
modes of deformation. This approach integrates both the
size and orientation of the shear band into constitutive rela-
tionships beyond the localisation. During post-bifurcation
analysis, macro effective stress and strain increment vec-
tors are symbolised by σ′i j and dεi j respectively where i, j
represent n and t. Two constitutes involved: shear band
and intact material are denoted by superscripts sb and out
respectively. The area factor- µ is defined as the ratio of
shear band area- Asb to the total area of the element or
material point- Aelement. This can be approximated as the
ratio of shear band thickness- tsb to the average element or
material point length- a.

µ =
Asb

Aelement ≈
tsb

a
(4)

The weak discontinuity approach or Hill-Mandel con-
dition assumes a velocity jump or a change in the gradients
of displacement across the boundaries of the shear band.
Hence a linear scaling of the strain rate is valid.

dεi j = µ dε sb
i j + (1 − µ) dεout

i j (5)

A unique feature of the undrained deformation is neg-
ligible volumetric strains. Therefore, without comprehen-
sive calculations, it is hypothesised that the shear strain
is concentrated inside the shear band while the volumet-
ric strain is shared by both shear band and intact material.
Thus Equation 5 can be rewritten as

dεout
i j =

dεii
3

(6a)

dε sb
i j =

dεii
3
+

dei j

µ
where dei j = dεi j − dεout

i j (6b)

At the onset of bifurcation, the material response in-
side and outside the shear band diverge from the same
point. Therefore, the effective stresses, void ratios and ex-
cess pore pressures inside and outside the shear band are
equalised to homogeneous effective stress- σ′i j, void ratio-
e and pore pressure- U (negative) at the onset of bifurca-
tion. σ′sb

i j = σ
′out
i j = σ

′
i j (7)

esb = eout = e (8)

Usb = Uout = U (9)

During the post-bifurcation analysis, effective stresses,
void ratios and pore pressures inside and outside the shear
band are updated separately from time step n to n + 1 .
During the update, they should be corrected for the pore
pressure generation and dissipation as given in sections 4.1
and 4.2 before being carried forward for the next step.

4.1 Calculation of local drainage

Fig. 2. Non-homogeneous negative excess pore pressure (a) be-
fore and (b) after dissipation

During the post-localisation analysis, the excess pore
pressure becomes non-homogeneous as displayed in Fig-
ure 2. To simplify the calculation, the generation and dis-
sipation of excess pore pressure is decoupled as shown
in Figure 2 (a) and (b), even though both occur simulta-
neously. The notations for stress, strain and excess pore
pressures before the dissipation are symbolised by a su-
perscript star. In shear band material, the pore pressure
change is caused by both volumetric change and the shear
induced dilation. Outside the shear band, the only reason
for the pore pressure generation is the volumetric change.

[
Usb∗
]
n+1
=
[
Usb
]
n
+ dUvol + dUsb

dilation (10a)
[
Uout∗

]
n+1
=
[
Uout
]
n
+ dUvol (10b)

Since the material behaviour inside and outside are lo-
cally homogeneous, their stress strain relationships take
the general form.

dσ′sb
i j = Dsb

i jkl dε sb
kl (11)

dσ′out
i j = Dout

i jkl dεout
kl (12)

The stiffness matrices are calculated from stress val-
ues remembered from the end of previous time step. The
stiffness matrix of the shear band - Dsb is calculated from
the shear band stress -

[
σ′sb

i j

]
n

and shear band void ratio -[
esb
]
n

whereas the stiffness matrix of intact material - Dout

is calculated from outside stress -
[
σ′out

i j

]
n

and outside void

ratio -
[
eout]

n. Thus, two hypothetical stress states
[
σ′sb∗

i j

]

and
[
σ′out∗

i j

]
exist before the dissipation.[
σ′sb∗

i j

]
n+1
=
[
σ′sb

i j

]
n
+ dσ′sb

i j (13)
[
σ′out∗

i j

]
n+1
=
[
σ′out

i j

]
n
+ dσ′out

i j (14)

The shear induced pore pressure rise dUsb
dilation is cal-

culated as the increase in the mean effective stress inside
the shear band.
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dUsb
dilation =

dσ′sb
ii

3
(15)

The generated pore pressure increment due to the vol-
umetric change during undrained condition is

dUvol =
dεii K f

e
(1 + e) (16)

where Kf is the bulk modulus of fluid.
Due to the difference in the accumulated pore pres-

sures inside and outside the shear band, an excess pore
pressure gradient is created as shown in Figure 2 (a). The
main hypothesis of this analysis is that a certain percent-
age of this gradient should be dissipated within the same
time step (tn+1 − tn = dt). After pore fluid dissipation the
excess pore pressure inside the band reduces and the pres-
sure outside the band increases as shown in Figure 2 (b).
Therefore, Equations 10 can be corrected as
[
Usb
]
n+1
=
[
Usb
]
n
+dUvol+dUsb

dilation−dUsb
dissipation (17a)

[
Uout
]
n+1
=
[
Uout
]
n
+ dUvol + dUout

recieved (17b)

The amount of dissipated pore pressure- dUsb
dissipation

depends on the difference in generated pore pressures in-
side and outside the shear band- ∆U. Depending on the
duration of loading and diffusive properties of the mate-
rial, the pore pressure gradient can be accumulated from
previous steps.

∆U =
[
Usb∗
]
n+1
−
[
Uout∗

]
n+1

(18)

The magnitude of pore pressure remaining inside the
band after the dissipation can be calculated from the diffu-
sivity Equation 19. The amount of dissipation is governed
by the diffusivity coefficient- cv as well as the time step-
dt of the analysis. cv depends on the permeability- k and
volume the compressibility- mv.

dU(z, dt) =
1

2 cv
√
πdt

∫ tsb
2

− tsb
2

dU(z, 0)
e−(z−x)2

4 c2
v dt

dx (19)

dU(z, dt) is the pore pressure profile at end of the time
step. The initial pore pressure profile dU(z, 0) is assumed
to be a step function with a magnitude of ∆U inside the
shear band and zero outside. This is shown as the ini-
tial profile (red) in Figure 3. The main assumption here
is that the dissipation happens after generation. It is ob-
served in Figure 3, that depending on the loading duration,
the shear band can be fully or partially drained. The dis-
sipated amount of pore pressure during a single time step
can be calculated as

dUsb
dissipation = ∆U − dU(z, dt) (20)

dU(z, dt) depends on the duration of external loading,
hence this includes the time dependent behaviour in the
context of time independent plasticity. Generally, it is as-
sumed that the fully undrained response of the saturated
soil is time independent. The hypothesis here is that al-
though the global behaviour is independent of time, the
local drainage depends on the time, hence should be taken
into the consideration. dUout

recived depends on drainage dis-
tance as shown in Figure 3. For very small area factor,
dUout

recived can be assumed as zero.

4.2 Correction of stress for the local drainage

The pore pressure gradient created due to enhanced shear
strain inside the band is shown in Figure 2(a) in blue colour
while the homogeneous pore pressure is shown in black
dashed line. During the loading of saturated soil, the dissi-
pation of excess pore pressure also occurs simultaneously
with the generation. If the loading is slow enough, the
excess pore pressure inside can be dissipated making the
shear band fully or partially drained which is shown in Fig-
ure 2(b). The remaining excess pore pressure after dissi-
pation contributes to the final effective stresses in and out
of the shear band. Therefore, the ultimate strength at the
end of a time step results from the competition between
the rate of generation and dissipation, which is governed
by the permeability, compressibility of soil as well as the
loading rate. Hence, updated stress inside the shear band
from Equation 13 should be corrected as[
σ′sb

i j

]
n+1
=
[
σ′sb∗

i j

]
n+1
− dUsb

dissipationwhen i = j (21)

The outside effective stress is assumed not to be changed
by the dissipation.[

σ′out
i j

]
n+1
=
[
σ′out∗

i j

]
n+1

(22)

Fig. 3. A diagram of excess pore pressure distribution across a
shear band for different loading times - dt

4.3 Calculation of volumetric strain inside the
shear band

Due to the undrained global boundary conditions, the vol-
umetric strain at a material point is very small. However, it
is delineated in the above section that a portion of excess
pore pressure generated due to undrained mean pressure
rise inside the band is reduced due to the dissipation. This
changes the boundary conditions of shear band material
from undrained to partially drained. In other words, there
is a net volumetric strain increment inside the shear band
due to the dissipated pore pressure. The corrected strain
increments inside the shear band - dε sb

i j can be recalculated
from the corrected stress increments.

dσ′sb
i j − dUsb

dissipation = Dsb
i jkl dε sb

kl when i = j (23)

4.4 Update of Void Ratio

It is shown above that although the global boundary condi-
tion is purely undrained, the material inside the shear band
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Fig. 3. A diagram of excess pore pressure distribution across a
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4.3 Calculation of volumetric strain inside the
shear band

Due to the undrained global boundary conditions, the vol-
umetric strain at a material point is very small. However, it
is delineated in the above section that a portion of excess
pore pressure generated due to undrained mean pressure
rise inside the band is reduced due to the dissipation. This
changes the boundary conditions of shear band material
from undrained to partially drained. In other words, there
is a net volumetric strain increment inside the shear band
due to the dissipated pore pressure. The corrected strain
increments inside the shear band - dε sb

i j can be recalculated
from the corrected stress increments.

dσ′sb
i j − dUsb

dissipation = Dsb
i jkl dε sb

kl when i = j (23)

4.4 Update of Void Ratio

It is shown above that although the global boundary condi-
tion is purely undrained, the material inside the shear band

can be fully or partially drained depending on the amount
of dissipation. Hence, the void ratio inside and outside
should be updated according to the respective volumetric
strains. Since the intact material acts as almost undrained,
dεout

ii is negligible. dε sb
ii can be calculated from Equation

23. [
esb
]
n+1
=
[
esb
]
n
+ (1 +

[
esb
]
n
) dε sb

ii (24)
[
eout
]
n+1
=
[
eout
]
n
+ (1 +

[
eout
]
n
) dεout

ii (25)

4.5 Calculation of macroscopic stress

The macroscopic stress of the material point is established
by averaging the corrected shear band stress (Equation 21)
and outside stress (Equation 22). The foundation for this
averaging technique stems from combining the average
principal of virtual work and the strain decomposition in
Equation 5 [10].[

σ′i j

]
n+1
= µ
[
σ′sb

i j

]
n+1
+ (1 − µ)

[
σ′out

i j

]
n+1

(26)

Finally, the homogenised effective stress at the end of
the time step is transformed back to global coordinates x-
y. It is utilised by ABAQUS to solve equilibrium equa-
tions at nodes. Corrected stresses, void ratios and excess
pore pressures of respective material are carried forward
for the next time step. The proposed constitutive method
is termed as the diffusion SB model hereafter.

4.6 Calibration of diffusion SB model with
undrained extra-fine mesh

Single element biaxial compression test is conducted to
numerically validate the proposed constitutive model. It is
compared with extra-fine mesh (element size 0.006 25 m)
with same boundary conditions. Some weak material
points are embedded in the bottom right corner of the
extra-fine mesh to trigger the localisation. Plane strain re-
duced integration elements with pore pressure (CPE8RP)
are utilised for all simulations.

The initial and boundary conditions are specified in
the first step. In both specimens, the bottom right node
is pinned and other bottom nodes are roller supported.
The top and side nodes are not constrained. All vertical
and horizontal boundaries are assumed to be impermeable.
The initial void ratio of sand is 0.55 and the permeability
is 0.001 m/s. The initial pore pressure is prescribed as
10 kPa throughout the specimens. A confining pressure
of 100 kPa is applied to both top and side edges during
the second step. A transient consolidation analysis is con-
ducted with ABAQUS finite element software. At the final
step, a displacement of 0.1 m is applied to top nodes. The
different loading durations are mentioned in Table 1. Both
specimens are assumed to remain saturated throughout the
deformation. Hence the phenomenon of cavitation is ruled
out.

Formulations in section 4 are valid for an arbitrary crit-
ical state material model. In this study, the Nor-Sand con-
stitutive model is adopted. A detailed implementation of
this model can be found in [11]. Since it is a state param-
eter based model, the dilation is a function of the current

void ratio and effective mean pressure. This facilitates the
implementation of the proposed approach.

The extra-fine mesh is simulated with the original Nor-
Sand model whereas the single element is modelled with
the proposed diffusion SB model. The thickness of the
shear band is assumed to be 0.0125 m, similar to the band
thickness of extra-fine mesh. The root mean square av-
erage of a gauss point in the single element is 0.175 m.
Hence the area factor calculated from Equation 4 is 0.071.
The shear band angle is 54◦ which is calculated from the
extra-fine mesh. Both shear band inclination and thickness
are assumed to be constants and measured after a steady
state shear band is formed in the extra-fine mesh.

The onset of bifurcation and diffusive coefficient in the
diffusion SB model are calibrated to match with the global
response of the extra-fine mesh. The calibrated input pa-
rameters of the diffusion SB model are given in Table 1.
In fact, the shear localisation in the single element starts
when the acoustic tensor criterion is first time satisfied by
the extra-fine mesh. Figure 4 displays the total reaction
forces of extra-fine mesh simulated by original Nor-Sand
model along with the single element simulations of the dif-
fusion SB model. The response of the single element mod-
elled by the original Nor-Sand model is also included for
the comparison.

Table 1. Calibrated input parameters for diffusion SB model

Loading
duration

(s)

Area
factor -
µ

Diffusive
coefficient
- cv (m2/s)

Deviatoric
strain at onset
of shear band

1 0.071 5 0.08
0.1 0.071 5 0.085

0.01 0.071 5 0.115
0.001 0.071 5 0.16
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Fig. 4. Comparison of the global reaction forces of extra fine
mesh with single element diffusion SB model

It is observed that the reaction forces of the diffusion
SB model reach constant plateaus after the shear bands are
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formed for the loading duration 1 s,0.1 s and 0.01 s. Ac-
cording to the assumption 6(a), the outside shear strain
is zero, thus the mean pressure increases only inside the
shear band. When the loading time step is large enough to
fully dissipate the dilation induced pore pressure inside the
shear band, effective mean pressure becomes a constant.
Hence there is no longer an increase in shear strength.
However, when the loading duration is 0.001 s, initially
pore pressure gradient accumulates inside the shear band
which leads to a slight increase of stiffness as shown in
Figure 4 (orange dotted line). Nevertheless, large pressure
gradient, in turn, accelerates the dissipation and reduces
the shear strength soon. Another reason for the observed
plateaus is the stress averaging in Equation 26. When the
area factor is small (shear band thickness is much smaller
than average element/or material point length), the macro-
scopic strength is governed by the outside material.

In reality, the strength in material outside the shear
band also increases due to two reasons. First, it also under-
goes a slight dilation and produces negative pore pressure.
Second, it receives dissipated negative pore pressure from
the shear band. The diffusion SB model does not take this
into consideration since the amount of received pressure
depends on the proximity to the shear band. The proposed
model is created for the ultimate motive of modelling large
scale boundary value problems, for which the shear band
thickness is several orders of magnitude smaller than the
element size. Therefore the received pore pressure is ig-
nored here. As a result, the macroscopic mean pressure
increase is hindered after the shear band is formed.

Several factors should be taken into the account when
the global response of the extremely fine mesh is com-
pared with the material response of the diffusion SB
model. Localisation in a continuum mesh is progressive
in nature. Different material points reach bifurcation cri-
teria at different stages of deformation. Generally, weak
elements initiate the shear band. The change of stiffness
in the global response of extra-fine mesh is likely when
the acoustic tensor criterion is first time satisfied by any
material point. This generally occurs after the maximum
stress ratio. This heterogeneity cannot be captured by a
homogeneous constitutive model. As a solution, in Figure
4 the onset of the shear band is calibrated to match with
the extra-fine mesh. In a similar attempt to build a mate-
rial model with a locally drained shear band, [9] utilised
the experimentally observed values for the shear band ini-
tiation.

Moreover, even when the shear band is fully drained
(when the loading duration is greater) the reaction forces
in extra-fine mesh continue to increase. This is because
different material points reach the critical state at different
stages and the strength is continuously building up. The
shear band develops progressively widening its thickness.
Further, outside elements unload at the start of localisation
and reload again. These features cannot be accounted by
the constitutive relations in the diffusion SB model. Hence
a small amount of shear should be included in outside ma-
terial to match with the results of extra-fine mesh.

Even though the post-localised progressive failure is
not apprehended very accurately, the results of diffusion

SB model are superior to the undrained behaviour pre-
dicted by the original Nor-Sand model (displayed by a red
dash line in Figure 4). The original model cannot perceive
the underlying micro-kinematics. Hence it shows an uni-
form undrained response independent of the rate of load-
ing.

6 Conclusion

The negative pore pressure generated during the undrained
deformation of dilative sand results in an enhanced
strength which is called dilative hardening. This phe-
nomenon can occur in the saturated dense sand with a
higher percentage of fine particles during fast loading
rates. However, the shear localisation associated with the
local drainage interrupts the dilative hardening and termi-
nates the strength increase. In finite element method, this
local drainage is mesh dependent and correctly captured
only if the mesh size is smaller than the shear band thick-
ness. A macroscopic constitutive model is developed in
this study to capture the local drainage which occurs at
micro-scale. Both rate and scale effects which govern the
pore fluid diffusion in the shear band are taken into consid-
eration. The proposed method is calibrated with the finite
element response of a very fine mesh. For smaller load-
ing rates, the strength increase is terminated by the pro-
posed model indicating a fully drained shear band. For
faster loading rates, the shear strength is enhanced ini-
tially due to the accumulated pore pressure gradient but it
is decreased eventually as the excess pore pressure is dis-
sipated. The ultimate strengths predicted by this method
are much lower than the homogeneous undrained strength
simulated by the original constitutive model.
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