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Abstract. Fused deposition modelling (FDM), as one technology of additive manufacturing, fabricates parts always 

with curl and looseness defects which restrict its development to a great extent. In this paper, a method based on 

acoustic emission (AE) was proposed to recognise the status of the manufactured part in FDM process. Experiments 

were carried out to acquire the AE signal when the printing part was respectively in normal, looseness and curl state. 

The ensemble empirical mode decomposition (EEMD) was employed to the process of feature extraction and both the 

methods of Hidden-semi Markov model (HSMM) and support vector machine(SVM) were applied to recognise the 

three states of the normal, looseness and curl. The results reveal that the combination of EEMD and HSMM makes it 

more accurate to recognize these three states.  

1 Introduction  

Additive manufacturing (AM) technology have been 

gaining more and more popularity for its ability in 

fabricating complex parts without any tooling 

requirement and human interface. The quality of AM is 

still poorer than which of traditional subtractive 

manufacturing. Researchers have made many efforts to 

improve the quality of parts printed by AM. Filling path 

was optimized by Jin et al [1]. In their paper, a parallel-

based path was generated where the sequence of the 

filling area was optimized and after that the overfilling 

and under filling phenomena were relieved. Printing 

parameters make a complex effect on the fabricated parts. 

Parameters optimization were conducted in [2,3] where 

experiments were carried out and impacts of process 

parameters like layer thickness and extrusion velocity on 

quality of printed parts which were compressive stress 

and dimensional error here were respectively explored. 

The specific impacts of the process parameters on the 

quality of AM fabricated parts have not been understood 

yet considering the complexity it works. Mechanical 

properties like fatigue and sliding wear were researched 

in [4,5]. Ravari et al. [6] constructed the beam and solid 

model and then, carried out the experiment to study the 

mechanical behaviour of the printed part with lattice 

structures. According to the authors, solid model predicts 

a lower mechanical stress-strain curve than that by the 

beam model and at least ten and twelve intervals should 

be considered for each strut to achieve reasonable elastic 

modulus and collapse stress in the process of numerical 

simulation.  

Temperature monitoring was carried out by 

Abdelrahman [7] in selective laser sintering (SLS) 

process, where high resolution infrared thermal imaging 

was used before, during, and after laser scanning. A 

relationship between the temperature and the geometry of 

the part, the layer cross-sectional area, and the presence 

or absence of an underlying solid layer was shown. 

Heterogeneous sensors including accelerometers, 

thermocouples, an infrared (IR) temperature sensor, and a 

real-time video borescope were employed to monitoring 

the platform vibration, extruder vibration, platform 

temperature, extruder temperature, melt-pool temperature 

and real-time condition [8]. A predictive model was built 

successfully to give an instruction about the failure 

modes. Other researches like [9] aimed at the monitoring 

of process variables as well. 

FDM is one technology of AM and has been widely 

used for its low cost, easy operation and little pollution. 

During FDM, the material filament was heated to a semi-

molten state and then, extruded through the printing 

nozzle in a prescribed path onto a platform or a deposited 

layer. After a layer was fabricated, the printing nozzle 

moves up or the platform moves down in a layer's height 

and this printing process continued until the whole part is 

completed. The deposited material cools, solidifies and 

bonds with the neighbouring material. This heating and 

rapid cooling cycles of the work materials will aggravate 

non-uniform thermal gradients and cause stress build-up 

that consequently results in defects. The monitoring 

approaches carried out in FDM process can be divided 

into the destructive testing and the non-destructive testing. 

Fibre Bragg grating or thermocouple [11,12] based 

investigations of temperature, residual stresses and 
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residual strains are typical destructive testing which were 

embedded into the fabricated parts in FDM process. 

Understanding the development process of temperature, 

residual stresses and residual strains contributes to 

choosing the suitable parameters to avoid the defects 

appearing. The non-destructive testing method is mainly 

based on the Machine Vision (MV). Yi et al. [13] 

combined the MV and Statistical Process Control (SPC) 

to detect defects in FDM. The results proved the 

proposed method could detect defects during 

manufacturing process successfully. Although the method 

still need a certain time to make decisions. Ultrasound 

inspection is another available way to monitor the defects 

in FDM [14-16]. However, the application of it has been 

restricted to the delamination inspection and not mature 

yet. 

Considering that the availability of AE sensor in 

detecting stress wave when the structure of the printing 

part changed, this paper presented a monitoring method 

based on AE. Data pre-processing was implemented to 

normalize and de-noise the acquired AE signals. Further, 

EEMD was applied to extract features of the signals in 

different states. Both the HSMM and SVM were 

employed to recognise the three states and finally the 

recognition results were compared and discussed. In the 

remainder of this paper, the relative methodologies are 

introduced in Section 2. In Section 3, experimental setup 

and procedures are presented. We give the experiment 

results and discussions in Section 4.  

2 Methodologies  

2.1 Feature extraction method of ensemble 
empirical mode decomposition 

EEMD was proposed by Wu and Huang [17] and it is a 

method developed on the basis of empirical mode 

decomposition (EMD) which is suitable for the handling 

of nonlinear and non-stationary signals. EEMD was 

proposed to overcome the major drawback of EMD 

called mode mixing problem [17] by artificially adding a 

series of Gaussian white noise in the decomposition 

process of the target signal. It has been widely used in the 

fault diagnosis of the rotating machinery [18-22]. 

The title is set in bold 14-point Arial, flush left, 
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2.2 Pattern recognition method of hidden semi-
Markov model and support vector machine 

2.2.1 Hidden semi-Markov model 

HSMM [23] is an improved method on the basis of 

hidden Markov model (HMM) which is a simple dynamic 

Bayesian network and makes inference by calculating the 

value of likelihood of being in certain discrete "hidden 

states". Each state of HSMM has variable duration and a 

number of observations being produced while in the state. 

Thus, a wider range it has been applied. Dong and He 

improved the precision of fault diagnosis by using 

HSMM [24] and states diagnosis and prediction was 

made as well. Human activities of daily living (ADL) was 

learned and recognized by Duong et al. in [25]. A 

statistical speech synthesis system based on HSMM was 

proposed [26] considering the inconsistency HMM made. 

2.2.2 Support vector machine 

SVM was proposed by Vapnik [27] and has been widely 

used in the fault diagnosis of traditional manufacturing 

machine [28,29], monitoring of the tool wear [30] and 

abnormality detection on-line [31].The voting strategy is 

adopted[32] to determine the classes of the input data. 

SVM is a supervised algorithm. So it is necessary to 

divide the samples to the training data and test data. The 

generalization ability of SVM is depended on the chosen 

kernel function to a great extent. Furthermore, SVM is 

adaptive to the two-class problem and it needs to 

construct many SVMs when handling multi-class 

problem. 

2.3 Model performance measurement based on 
F-score 

Precision ratio and recall ratio are two indexes which can 

response the constructed model performance. The 

samples are divided to categories of true positive, false 

positive, true negative and false negative for a two-class 

problem. Let TP, FP, TN, and FN respectively represent 

the sample sizes of these categories. 

The precision ratio is always contradictory with the 

recall ratio. The recall ratio is low when the precision 

ratio is high and vice versa. F-score is a measurement 

balancing the precision ratio and recall ratio. It is defined 

as the harmonic average of precision ratio and recall ratio 

which is adopted as the analysis method of our SVM 

recognition result. 

3 Experimental set up and procedures  

3.1. Experimental set up  

As shown in Figure 1, the FDM machine used in our 

experiment is D-force delta bot and the material is PLA. 

The AE system involves the AE sensor, preamplifier and 

data acquisition system. The AE sensor used is α WS  

made by PAC with a working frequency band of [100 

kHz, 1000 kHz]. The preamplifier is 2/4/6C made by 

PAC also with a working frequency range of 10-1200 

KHZ. Magnification of both 1 dB and 10 dB are optional. 

Data acquisition card chosen is ADLink DAQ-2100 

which was embedded to the host of PC early. The 

software of signal acquisition is written in Labview. The 

sampling rate is adjustable. 
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Figure 1. Experimental equipment used: (a) D-force delta bot 

FDM machine and (b) Signal acquisition system. 

3.2 Procedures  

The AE sensor was attached to the platform tightly using 

the vacuum grease in a distance of about 15 cm like 

Figure 2. 

 

Figure 2. Location of AE sensor. 

The printed part is a hollow cylinder and the g-code 

was generated by Cura. Process parameters set is shown 

in Table 1. 

Table 1. The values of process parameters. 

Process parameters Values 

Layer height 0.15 mm 

Extruded temperature 207 ℃ 

Hotbed temperature 45 ℃ 

Filling density 30 % 

Filling speed 30 mm/min 

60 groups of data samples were acquired respectively 

when the printing part was in normal, looseness and curl 

states with 300000 data contained in each group. 20 

groups of data samples were used to train the HSMM and 

10 groups of data samples were used to test the HSMM. 

The last 30 groups of data were samples under test. 

4 Results and discussions 

4.1 Results of feature extraction 

To de-noise the acquired AE signals, fast Fourier 

transform (FFT) was carried out and 450 kHz was chosen 

to be the cut-off frequency of low-pass filtering. And then, 

the signals were normalized by subtracting its mean value 

to be symmetrical about the zero axis. To relieve the 

computing burden of CPU, each groups of signals were 

divided into 10 equal frames. We use T  to represent the 

length of each frame data and ) , ,( T
k

k
1

k OOO   to 

represent the observation value of the k -th frame data. 

EEMD was carried out for each frame data and 13 IMFs 

were obtained. 

The correlation coefficients between each IMF and 

the corresponding original signal were calculated and the 

standard deviations of them were calculated too which 

were the lower threshold when choosing the effective 

IMFs. Finally, the first, second, third and fourth IMF 

were selected as the effective IMFs. For each segmented 

signal, the energy of each effective IMF was calculated as 

the elements of a signal feature vector. 

4.2 Results of status recognition based on 
hidden semi-Markov model 

Left to right HSMM with 3 hidden states was employed. 

Matrix π  is： 

]001[π .   (1) 

Matrix A  owning the same state transition probability is 

like: 



















100

0.50.50

00.50.5

A   (2) 

The distribution of observed value represented as 

matrix B  is Gaussian mixture distribution and the 

probability density function of dwell time in each state 

represented as )(dPi  is single-Gaussian function. K-

means was employed to the initialization process. 
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Figure 3. Training plot of HSMMs. 
The number of maximal iteration and convergence 

error is respectively set as 50 and 0.01. 20 groups of 

samples were treated as training data. All three models 
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converged within 30 iterations. The training plot of 

HSMMs constructed for the recognition of each state is 

shown in Figure 3. As we can see, the curve of each state 

tends to converge which proves the learning ability of 

HSMM. 

After the training, 10 groups samples were treated as 

the test data. One example of the test plot based on the 

HSMM constructed for the recognition of normal state is 

shown in Figure 4. The recognized state is the one which 

owns the maximal logarithmic likelihood probability. 
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Figure 4. Test plot based on the HSMM constructed for 

the recognition of normal state. 

Since a good result was obtained, the last 30 groups of 

samples were used in the states recognition process. The 

recognized results are shown in Table 2. 

Table 2. Recognized results based on HSMM. 

(a) Recognized result based on the HSMM constructed 

for the recognition of normal state. 

 Recognized result 

Actual state Normal state Other state 

Normal state 29 1 

Other state 2 58 

(b) Recognized result based on the HSMM constructed 

for the recognition of loose state. 

 Recognized result 

Actual state Looseness state Other state 

Looseness state 28 2 

Other state 1 59 

(c) Recognized result based on the HSMM constructed 

for the recognition of curling state. 

 Recognized result 

Actual state Curl state Other state 

Curl state 30 0 

Other state 0 60 

4.3 Results of status recognition based on 
support vector machine 

70 groups of samples were chosen as the training data 

while 30 groups of samples were chosen as the test data. 

Owing to the nature of a two class classifier, SVM was 

respectively constructed for the three states by training 

their corresponding samples. Each trained SVM was 

tested by samples of all three states respectively and the 

statistics results are shown in Table 3. One example of 

the test plot based on the SVM constructed for the 

recognition of normal state is shown in Figure 5. The 

non-linear kernel function was selected in the SVM 

constructed for the recognition of normal state while the 

linear function was employed in the SVM built for the 

recognition of looseness and curl states. 
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Figure 5. Plot of testing normal samples based on the 

SVM constructed for the recognition of normal state. 

Table 3. Recognized results based on SVM. 

(a) Recognized result based on the SVM constructed for 

the recognition of normal state. 

 Recognized result 

Actual state Normal state Other state 

Normal state 29 1 

Other state 1 59 

 

(b) Recognized result based on the SVM constructed for 

the recognition of looseness state. 

 Recognized result 

Actual state Looseness state Other state 

Looseness state 30 0 

Other state 8 52 
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(c) Recognized result based on the SVM constructed for 

the recognition of curling state. 

 Recognized result 

Actual state Curl state Other state 

Curl state 30 0 

Other state 0 60 

4.4 Results of model performance measurement 

Values of P and R calculated for different models are 

shown in Table 4. 

Table 4. P and R values. 

(a) P and R of HSMMs constructed for the recognition of 

each state. 

P and R Normal Looseness Curl Mean 

P 0.9355 0.9655 1 0.9667 

R 0.9667 0.9333 1 0.9667 

(b) P and R of SVMs constructed for the recognition of 

each state. 

P and R Normal Looseness Curl Mean 

P 0.9667 0.7895 1 0.9187 

R 0.9667 1 1 0.9889 

Values of score-F  based on HSMM and SVM are 

calculated as: 

0.9668
2

(HSMM) 





RP

RP
  score-F   

0.9525
2

(SVM) 





RP

RP
  score-F    

Thus, the score-F  value of HSMM is a bit higher 

than which of SVM. 

The number of 1)/2-(kk  or k  SVMs need to be 

constructed for the multi-state classification problem due 

to it being a two class classifier which complicates the 

calculated process while HSMM is more appropriate to 

this problem. Further, HSMM is able to predict the 

development of defects according to signs it appeared. 

5 Conclusion 

AE sensor was applied in our article. The feature 

extraction method EEMD and pattern recognition 

methods of HSMM and SVM were employed to the 

status recognition of the printing part. The score-F  

value was calculated to evaluate the performance of each 

constructed model. The results show that above methods 

are able to recognised the normal, looseness and curl 

states and the recognition ability of HSMM is a bit higher 

than SVM. 
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