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Abstract. The permanent magnet synchronous motor (PMSM) is important in position tracking 

applications. A performance degradation is caused by the internal uncertainties and external load 

disturbance. To achieve a high control performance, a fast and precise control scheme with great robustness 

has to be applied. In this paper, we propose a composite control method for PMSM systems by combing the 

extended state observer (ESO) technique with fast terminal sliding mode (FTSM) control. The FTSM 

guarantees the fast convergence rate and the ESO can estimate the disturbance accurately. The proposed 

method has a fast response and a good disturbance rejection property compared with other sliding mode 

methods. Simulations are carried out to show the effectiveness of this method. 

1 Introduction  

The permanent magnet synchronous motor (PMSM) is 

extensively employed in high-performance drive systems. 

This is mainly due to its compactness, high efficiency, 

and high torque-to-inertia ratio [1, 2]. It is well known 

that PMSM systems are confronted with external 

disturbance and internal parameter variations [3]. 

Therefore, it is unrealistic to obtain a satisfactory control 

performance only by linear control scheme such as 

proportional-integral controller. To enhance the control 

performance of PMSM systems, many nonlinear and 

advanced control schemes have been adopted [4], e.g., 

adaptive control [5], predictive control [6], intelligent 

control [7], sliding mode control (SMC) [8] and so on.  

Among the aforementioned methods, the SMC has 

been successfully applied due to its invariant properties 

to internal uncertainties and external disturbances. In 

general, there are three steps to be considered to design a 

SMC scheme: the choice of a sliding mode surface, the 

design of a reaching law and the determination of a 

control law. The conventional SMC has a linear sliding 

surface with asymptotical stability. To achieve finite-

time stabilization, terminal sliding mode (TSM) concept 

has been proposed [9]. It has been adopted in the control 

of rigid manipulators [10]. However, there are negative 

fractional powers in the TSM control law, which may 

arise the singularity problem. Non-singular TSM (NTSM) 

has been proposed to avoid singularity phenomenon. In 

addition, it maintains the advantages of traditional TSM 

such as finite time stability [11]. However, the reaching 

law of NTSM is discontinuous. Consequently, the 

undesirable chattering is caused. To eliminate the 

chattering effect, a continuous NTSM (CNTSM) with a 

continuous reaching law has been developed [12]. It can 

not only eliminate the chattering, but also stabilize the 

system in finite time. In addition, the control law of 

CNTSM is non-singular [13]. However, there are two 

problems hindering the use of CNTSM control as 

follows: 

(1) The nonlinear sliding surface makes the 

convergence rate slow in comparison with the 

linear one. This phenomenon is caused 

especially when the system state is far away 

from the equilibrium. 

(2) High gain is needed for CNTSM control when 

the PMSM system is affected by strong 

disturbance. Therefore, large steady-state 

fluctuations are caused. In addition, a prior 

knowledge of the bound of lumped disturbance 

is required to obtain enough robustness. It is 

impossible in real applications.  

To enhance system performance in the presence of 

multiple disturbance, the extended state observer (ESO) 

technique has been developed [14, 15]. It regards the 

lumped disturbance as a new system state and can 

estimate both disturbance and states [16]. Therefore, a 

feedforward compensation can be introduced into the 

controller design. 

In this paper, a fast terminal sliding mode (FTSM) 

control with continuous reaching law is applied in the 

position tracking control of PMSM systems. The sliding 

surface of FTSM has both linear and non-linear terms 

such that fast and finite-time convergence is achieved. 

Then, combining the FTSM control and the extended 

ESO technique, a robust FTSM (RFTSM) control 

method is developed for the tracking control of PMSM 

systems.  The proposed method has a fast convergence 

rate compared with ordinary SMC such as TSM control, 

NTSM control and CNTSM control. In addition, it can 
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estimate the lumped disturbance accurately. Hence, a 

good robustness with respect to external disturbance and 

internal uncertainties is obtained. Comparative 

simulations are performed to validate the effectiveness 

of the proposed method. 

2 Mathematical model of PMSM  

Taking the rotor coordinates (d-q axis) of the motor as 

reference coordinates, the flux linkage equations of the 

PMSM can be expressed as  
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where ψd, ψq are the flux linkage of d axis and q axis, 

respectively; Ld,  Lq are the d-axis and q-axis inductance, 

respectively; id, iq are the d and q axis stator currents, 

respectively; ψr is the flux linkage established by 

permanent magnet. Applying Kirchhoff’s voltage law, 

the PMSM voltage equations can be represented as  
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where ud, uq are the d and q axis stator voltages, 

respectively; ωr is the electrical angular velocity of the 

rotor; Rs is the stator resistance. In general, the d-axis 

reference current i
* 

d  is set to 0 to eliminate the couplings 

between speed and current. Output current id usually 
satisfies id =i

* 

d =0 because of the regulation of current 

controller [17]. Then the electromagnetic torque of 

PMSM can be expressed as  

 
e t qT k i

   (3) 

with kt the torque constant. Considering the friction 

damping and the load torque, the motion equation of the 

PMSM can be obtained as 
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with J the system moment of inertia, pn the number of 

pole pairs, TL the load torque and B the viscous friction 

coefficient. So taking the angular position and speed as 

the system state variables, the following state-space 

model can be obtained 
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where θr is the electrical angular position of the rotor, i
* 

q  

is the q-axis reference current and is also the control 

input in this paper, n tp K
a

J
 is the control input 

constant, ( )
p

r r

n B
b

J
   is the smooth function of r , 

*( )
p t p

q q L

n K n
d i i T

J J
     is the system disturbance. 

3 Controller design  

Let θref be the position reference and define the tracking 

error as e=θr-θref. The sliding surface of CNTSM 

introduced in [12] can be described as 

 / 0p qs e e  
 

 (6) 

where β>0 is a design constant, and both p and q are 

positive odd integers satisfying q<p<2q. The reaching 

law is  

 0 0/

1 2
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 (7) 

where k1 and k2 are positive design constants, and both p0 

and q0 are positive odd integers satisfying p0>q0. 

Combing model (5), sliding surface (6) together with 

reaching law (7), the CNTSM control law for PMSM can 

be deduced as 
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One can see that the control law is continuous and has no 

terms with negative fractional powers. Therefore, the 

chattering and singularity can be eliminated. 

However, the following equation can be deduced 

according to (6) 

 / /q p q pe e 
 (9) 

One can see that the absolute value of e  is much smaller 

than that of linear sliding surface (p=q) when e is far 

away from zero. Therefore, the convergence rate of 

nonlinear sliding surface is slower. It should be noted 

that the result reverses when e is close to zero. The 

reason is that e  remains almost a constant on the linear 

sliding surface while grows exponentially on the 

nonlinear one. 

To accelerate the convergence rate, the following fast 

terminal sliding mode is applied [18]  

 / 0q ps e e e    
 

(10) 

where α>0 is a constant. When e is far away from 

zero, the derivative of tracking error can be 

approximately represented as e e  . When e is close 

to zero, it can be approximately expressed as 
/q pe e  . 

As a result, the fast convergence rate of e can be 

guaranteed. The following FTSM control law for PMSM 

can be derived  

 0 0/* 1

1 2

/ 1

( ( )

      )

q p

q r ref

q p

i a b k s k s

q
e e e d

p

 

 





    

  

 

(11) 

We can see from CNTSM control (8) and FTSM 

control (11) that there is a disturbance term d. In real 

applications, it cannot be measured directly and its 

bound is hard to obtain. Therefore, d is usually set to 

zero. Thus performance degradation is caused because 

the system disturbance cannot be suppressed effectively. 

To improve the disturbance rejection property of this 

system, an ESO technique is incorporated to estimate the 

lumped disturbance.  

A second-order linear ESO for PMSM system (5) can 

be designed as follows [19]  
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where ˆ
r  and d̂  are the estimate of ωr and d, 

respectively, and -p is the desired double pole of the 

ESO with -p <0. Thus, the RFTSM control method for 

PMSM can be expressed as  
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(13) 

Compared with control law (8) and (11), control law (13) 

has a disturbance compensation term d̂ . Therefore, it 

has a better disturbance rejection property. 

4 Simulation results and discussion 

To demonstrate the effectiveness of the proposed 

RFTSM method, comparative simulations have been 

performed in MATLAB/Simulink R2017a. Three 

methods, i.e., CNTSM, FTSM and RFTSM are applied 

for position tracking of PMSM systems. The position 

reference is θref =60cos(π/2t) deg and the control input 

saturation is ±30 A. External load torque TL=30 Nm is 

added from t=0.5 s to t=0.6 s. In the two current loops, 

the proportional gain Kp =150 and the integral gain Ki 

=750. Table 1 shows parameters of the PMSM used in 

this paper. 

Table 1. Parameters of the PMSM. 

Parameters Values 

Rated power 1.5 KW 

Rated torque 14.32 Nm 

Rated speed 1000 rpm 

Stator resistance 1.79 Ω 

Pole pairs 4 

Torque constant 2.45 Nm/A 

System moment of inertia 1.792×10-3 kg.m2 

Viscous friction coefficient 9.403×10-5 Nm.s/rad 

Stator inductance 6.68×10-3 H 

Flux linkage 0.4083 Wb 

4.1 Simulation results 

The parameters of CNTSM are: k1=150, k2=150, q0=1, 

p0=5, p=5, q=1, β2=1/260. One can see from Fig. 1 that 

the position response converges to the reference in finite 

time and tracks it well. However, the convergence rate is 

slow as shown in Fig. 1(b). Besides, The steady state 

error is large because of the impact of the lumped 

disturbance. In addition, there are obvious fluctuations 

when the external disturbance is added or removed. 
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Fig. 1. Results of CNTSM. (a) Position reference and response, 

(b) tracking error. 

The parameters of FTSM are selected as: α=150, 

β=150, p=7, q=1, p0=9, q0=1, k1=70, k2=30. The 

simulation results of FTSM are shown in Fig. 2. It is 

obvious that the convergence time of FTSM is much 

shorter than that of CNTSM. In addition, the steady 

tracking error and disturbance fluctuation are smaller. 

However, the tracking error is still a little large and the 

fluctuations still exist due to external disturbance.  
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Fig. 2. Results of FTSM. (a) Position reference and response, 

(b) tracking error. 
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(b) 

Fig. 3. Results of RFTSM. (a) Position reference and response, 

(b) tracking error. 

For RFTSM, the pole of ESO is -p=-50000 and the 

other parameters are the same as those of FTSM. The 

simulation results are shown in Fig. 3. We can see that a 

fast, high-precision and robust performance is achieved. 

The response converges to the reference fast and the 

tracking error is negligible. Moreover, the impact of the 

external disturbance is eliminated. The reason can be 

found in Fig. 4. It is evident that the ESO can estimate 

the disturbance accurately. Hence, the system 

disturbance can be compensated by subtracting the 

estimated disturbance from the control input. 

Fig. 5 shows the tracking error under RFTSM control 

method with perturbation in system inertia. The tracking 

errors of different system inertias is summarized in  

Table 2. J0=1.792×10-3 kg.m2 is the initial value of 

system inertia. One can see that the tracking error tends 

to be larger with the increase of system inertia. However, 

it remains small in all cases and the control performance 

remains satisfactory. Thus, we can conclude that the 

proposed RFTSM method has a strong robustness with 

respect to external disturbance and internal uncertainties. 
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(b)                                                

Fig. 4. Estimated disturbance values of ESO and real 

disturbance values. (a) Original figure, (b) zoomed figure. 
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Fig. 5. Tracking error under RFTSM with perturbations in 

system inertia. 
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Table 2. Tracking errors with perturbation in system inertia 

Values of 

system inertia 

Steady tracking 

error (deg) 

J=J0 0.01 

J=2J0 0.38 

J=3J0 0.40 

4.2 Discussion  

To make clear comparisons, the simulation tracking 

performances of three methods are summarized in Table 

3. It can be observed that the settling time of RFTSM is 

reduced by 46.7% compared with the CNTSM method. 

The steady tracking error is reduced by 99.5% and 

98.6% compared with CNTSM and FTSM, respectively. 

In addition, the disturbance fluctuation under the 

proposed RFTSM method has reduced to a negligible 

magnitude.  

It should be noted that there is a term 

/ 1q pq
e e

p
 

with a negative fractional power in 

expression (11) and (13). This means singularity 

problem may appear under FTSM or RFTSM control 

method. However, this problem can be easily overcome 

by the saturation function of  controllers. 

Table 3. Tracking performance comparisons of three control 

schemes 

Control 

schemes 

Settling 

time (s) 

Steady tracking 

error (deg) 

Maximum 

disturbance 

fluctuation (deg) 

CNTSM 0.15 2.09 4.76 

FTSM 0.08 0.74 1.1 

RFTSM 0.08 0.01 0.34 

5 Conclusion 

A fast and robust sliding mode control scheme is 

proposed for position tracking control of PMSM systems. 

This paper makes two contributions. First, the FTSM 

control method is applied such that the system state θr 

converges to the position reference θref  fast. Second, the 

ESO technique has been incorporated into FTSM 

method to enhance the disturbance rejection capacity of 

PMSM systems. Comparative simulations have been 

carried out to validate the effectiveness of the proposed 

method. Simulation results show that the proposed 

RFTSM method has a fast and precise performance in 

position tracking control. In addition, a strong robustness 

against internal uncertainties and external disturbance is 

achieved.  

This method can also be applied in positioning control 

and speed regulation control of PMSM servo systems. 
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