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Abstract. This study presents the modelling, design and analysis of three controllers applied to the 

non-linear model of a hydraulic uniaxial seismic shake table. Firstly, the system’s non-linear model is 

constructed based on the dynamic and mathematical analysis of the hydraulic actuator and the servo 

valve. Then, three control systems based on the LQR formulation are designed for the acceleration 

tracking: Linear quadratic integral (LQI), linear quadratic tracking (LQT) and a variation of LQT. 

Lastly, simulations are carried out using the non-linear model as the plant and the results showed that 

the variation of the LQT control exhibited the best acceleration tracking performance. 

1 Introduction  

The worldwide seismic activity has given engineers the 

responsibility to study, analyse and understand 

seismological phenomena to develop structures more 

resistant to earthquakes in order to saves as many lives as 

possible during a catastrophe of this nature [1]. Seismic 

shake tables are one of the tools developed jointly by 

mechanic, electronic and civil engineers to study the 

dynamic behaviour of structures subject to earthquakes 

[2]. The main objective of a seismic table is to reproduce 

reference earthquake accelerations on test structures [3]. 

Hydraulic seismic shake tables are the most popular 

since they allow greater load capacity, frequency and 

motion amplitude. However, acceleration tracking control 

is extremely complicated due to the non-linearities 

inherent to hydraulic systems and the existence of an 

unstable and unobservable mode in its measurement [3].  

In this work the non-linear dynamic model was first 

obtained for the hydraulic uniaxial seismic shake table. 

Then, three controllers based on the LQR formulation 

were designed: Linear quadratic integral (LQI), linear 

quadratic tracking (LQT) and a variation of LQT. Finally, 

simulations were carried out to compare the tracking 

performance of the proposed controllers and conclusions 

were established for a later experimental implementation 

in the seismic table of the Dynamics and Structural 

Control Lab at Universidad Industrial de Santander. 

2 System dynamics  

The schematic representation of the uniaxial seismic table 

hydraulic system under consideration in shown in Fig 1. 

The hydraulic actuator is double rod and is commanded 

by a servo valve. The system dynamics is established 

based on the analysis of this two elements [4].  

 

 
Fig 1. Seismic shake table hydraulic system. 

2.1 Actuator analysis 

The motion dynamics of the seismic shake table platform 

is obtained applying Newton’s second law of motion 

  ̈         ̇                       (1) 

where   is the platform mass,    the horizontal platform 

displacement,   the viscous damping coefficient,   the 

mass stiffness,    the effective piston area and    the 

load pressure, defined as         . 
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The actuator’s dynamics is obtained applying the 

continuity principle in each chamber and neglecting 

leakage 
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where    is the flow into chamber 1,   the flow into 

chamber 2,    and    the volume of chambers 1 and 2 

respectively,     and     the effective bulk modulus in 

chambers 1 and 2 respectively, and   and   the pressures 

in each chamber [5]. Defining the relationship between 

the chamber volumes and the actuator position gives 

                                     (3) 

where    and     are the constant equilibrium values for 

the volume in each chamber. Differentiating equations 3 

yields the relations between velocity and volume change 
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Defining the load flow as    (     )  , and 

combining equations 2 and 4 gives [5]. 

      ̇  
  

    

   

  
 

  

    

   

  
               (5) 

Assuming that the bulk modulus is the same for both 

chambers, equation 5 is approximated to equation 6 

where   is the effective Bulk Modulus and    the total 

fluid volume trapped in actuator’s chambers and pipes. 

      ̇  
  

  
 ̇                          (6) 

2.2 Servo valve analysis 

The flow supplied by the servo valve is related to the 

spool displacement by equation 7 (assuming symmetric 

orifices), where    is the discharge coefficient through 

the orifice,   the area gradient of the orifice,    the spool 

displacement,    the supply pressure and   the hydraulic 

fluid density. This equation is linearized using a first-

order Taylor expansion to obtain equation 8, where    

and    are known as flow gain and pressure-flow 

coefficient respectively [4].  
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The control voltage and spool displacement 

relationship is defined by the second-order differential 

equation 10 where   ,    and    are the gain, damping 

coefficient and natural frequency of the servo valve, and 

  is the control voltage [6]. 
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2.3 Non-linear state equations 

Using equations 1, 6, 7 and 10, and defining the state 

variables as      ,     ̇ ,      ,      ,     ̇ , 

the non-linear state equations are built as follows 
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This equations define the non-linear model of the 

hydraulic uniaxial seismic shake table. However, in order 

to design the proposed controllers it is necessary to obtain 

the linearized version of this equations and construct the 

state-space representation. 

2.4 Linear state equations and state-space 
representation 

Using equations 11 to 15 and the linearized equation of 

the flow supplied by the servo valve (equation 8), the 

linear state equations are built as follows 
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Based on the state equations the state-space 

representation of the linearized single-input single-output 

(SISO) system of the form  ̇        with output 

equation      is constructed 
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3 Control design  

Three control strategies based on the LQR formulation 

were proposed and designed for the control of the 

uniaxial seismic shake table. The first one is the linear 
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quadratic integral (LQI) control, which includes all the 

system’s states and the tracking error in the cost function. 

The second one is the linear quadratic tracking (LQT) 

control, which only includes the tracking error in the cost 

function, and the third one is a variation of the LQT that 

includes the tracking error and its derivative in the cost 

function. 

 

 
Fig 2. Closed-loop structure of the proposed controller. 

Generally the closed-loop structure of the proposed 

controllers consists of a state-feedback controller (SFC) 

and an output feedback controller (OFC) as shown in Fig 

2 [7] [8]. The linear single-input single-output (SISO) 

system state-space representation of the plant is defined 

as 

 ̇                                     (23) 

where   is the disturbance signal and    the disturbance 

vector. The structure of the OFC is specified based on the 

internal model (IM) principle and takes the tracking error 

  as the input [9]. The OFC state-space representation is  

 ̇                                   (24) 

Defining the new state vector as    [ 
   

 ]  then 

the augmented system is 

 ̇                                (25) 
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where the augmented matrices are 

   [
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   [
 
  
]         *

  
 
+                    (28) 

The control input for this system is defined by 

equation 29 where the gain matrix   consists of the state-

feedback gain    and the output feedback gain   . 

        [
  
  
] [   ]               (29)  

3.1 Linear quadratic integral (LQI) control  

In the LQI control the structure of the OFC is selected as 

a simple first-order integrator. Thus its state-space 

representation is defined as  ̇   , where   is the 

tracking error, defined as the difference between the 

reference   and the output  . The state-space 

representation of the augmented system is transformed by 

replacing the OFC representation in equation 25 
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The objective of the LQI control is to determine the 

gain matrix   of the optimal control law defined in 

equation 30 that minimizes the cost function 

  ∫ (  
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                (32) 

where   is the penalty matrix of all the system’s states 

and the tracking error defined as shown in equation 33, 

where    is the penalty of state   ,    the penalty of state 

  , and so on, until    which is the penalty of the tracking 

error. And   is the scalar penalty of the control signal. 
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By replacing the control law in equation 25 the state-

space representation of the augmented system for the LQI 

control is obtained. 
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3.2 Linear quadratic tracking (LQT) control  

In the LQT control the structure of the OFC is selected as 

a simple first-order integrator as in the LQI control. 

However, the objective of this control is to determine the 

gain matrix   of the control law defined by equation 29 

that minimizes the cost function 

  ∫ (      )  
 

 
                       (35) 

where   is the scalar penalty of the tracking error and   is 

a transformed input. In this formulation, the cost function 

is only penalizing the tracking error instead of all the 

system’s states plus the tracking error as in the LQI. 

 The solution of the LQT problem is done using the 

LQR formulation if the desired cost is transformed to 

  ∫ (  
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and the penalty matrix   is selected as shown in equation 

37, which is full of zeroes and only includes the penalty 

of the tracking error    in the last place.  
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3.3 LQT control considering error derivative 

When the OFC is a simple first-order integrator then the 

cost function can only contain the tracking error and high 
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order derivatives are excluded. In this variation of the 

LQT control the OFC is extended to include the first-

order derivative of the error function. Defining the OFC’s 

structure as (    )   where   is a known positive 

scalar, the cost function changes to 

  ∫ [ (    ̇)    ]  
 

 
                 (38) 

The OFC state-space representation changes to 

 ̇      ̇         (         )  (39) 

And the augmented system’s matrices    and    are 

transformed into  

   [
  

       
]        [

 
    

]        (40) 

By replacing the augmented matrices and the control 

law defined by equation 29 in equation 25 the state-space 

representation is obtained. 
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This variation of the LQT control will be named in 

this work as LQTB for simplicity and its solution is done 

as in the LQT control. 

5 Simulations 

To analyse the acceleration tracking performance of the 

proposed controllers, simulations were carried out using 

the non-linear model of the seismic shake table and using 

30% of El Centro earthquake as input signal. 

Fig 3 shows the acceleration tracking control of the 

controllers and Figure 4 shows the corresponding relative 

acceleration tracking error. As can be observed from both 

figures the tracking performance of the LQTB controller 

is the best among the other two controllers, presenting the 

smallest overall tracking error. The performance of the 

LQT controller is the worst, exhibiting delay error and 

the biggest magnitude tracking error.  

In order to quantitatively compare the tracking 

performance of the controllers, the relative maximum 

error (RME), the RME index, the root mean square error 

(RMSE) and RMSE index are adopted for evaluation [10]. 

These parameters are calculated as follows 
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where    is the desired acceleration,    the acceleration 

output of the controller and   the signal length. Table 1 

lists the evaluation parameters for the three controllers. 

These results clearly demonstrate that better acceleration 

tracking control can be achieved with the LQTB control 

than with the LQI and the conventional LQT. 

 
Fig 3. Acceleration tracking control with El Centro earthquake 

as input signal : (a) LQI control. (b) LQT control. (c) LQTB 

control. 

 
Fig 4. Tracking error with El Centro earthquake as input signal : 

(a) LQI control. (b) LQT control. (c) LQTB control. 
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Table 1. Acceleration tracking performance of the proposed 

controllers for El Centro earthquake input signal. 

Controller 

type 

RME 

 [    ] 

RME  

index  

RMSE 

[     

RMSE 

index 

LQI 1.125 36.93 % 0.418 18.52 % 

LQT 2.013 66.12 % 0.263 33.11 % 

LQTB 0.529 19.43 % 0.076 9.54 % 

 
 Figure 5 shows the comparison of the control signal 

for the three controllers. As can be observed the control 

effort for the LQTB and LQI controllers is very similar. 

The control effort of the LQT is smaller due to its 

magnitude tracking error showed in Figu 3 (b) and 4 (b). 

 

 
Fig 5. Control signal with El Centro earthquake input signal. 

6 Conclusions 

In this work the non-linear dynamic and mathematical 

model of a hydraulic uniaxial seismic shake table was 

developed. Three control strategies based on the LQR 

formulation were designed: LQI, LQT and a variation of 

LQT, named here LQTB. The LQI control minimizes a 

cost function that includes all system’s states, the 

tracking error and the control input, while the LQT 

control only considers the tracking error, and the LQTB 

the tracking error and its derivative. 

 Simulations were carried out using 30% of El Centro 

earthquake record as the input signal. The graphic results 

and the evaluation parameters calculated (RME, RME 

index, RMSE and RMSE index) showed that the LQTB 

control has the best acceleration tracking performance, 

followed by the LQI control. The LQT controller 

exhibited delay error and the poorest tracking. 

7 Observations 

Future work will include experimental validation of the 

dynamic model and implementation of the three proposed 

controllers in the hydraulic uniaxial seismic shake table 

of the Dynamics and Structural Control Lab at 

Universidad Industrial de Santander (UIS). The seismic 

table is shown in Fig 6 and consists of a Parker hydraulic 

cylinder, a MOOG 76-263 servo valve and a MTS 

hydraulic power unit. 

 

 
Fig 6. Unaxial seismic shake table at UIS. 
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