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Abstract. Results of studies of the oscillations of pipelines conveying a 

two-phase slug flow are presented in the paper. A viscoelastic model of the 

theory of beams and the Winkler base model are used in the study of 

pipeline oscillations with a gas-containing slug flowing inside. The 

Boltzmann-Volterra hereditary theory of the viscoelasticity is used to 

describe the viscoelastic properties of the pipeline material and earth bases. 

The effect of gas and liquid phases flow rates, influence of tensile forces in 

the longitudinal direction of the pipeline, parameters of Winkler bases, 

parameters of singularity in the heredity kernels and geometric parameters 

of the pipeline on the oscillations of structures with viscoelastic properties 

are numerically studied. It is revealed that an increase in the length of the 

gas bubble zone leads to a decrease in the amplitude and oscillation 

frequency of the pipeline. The critical rates for a two-phase slug flow are 

determined. It is revealed that an increase in the soil density of the bases 

leads to an increase in the critical rate of gas flow. It is shown that an 

account of viscoelastic properties of structure material and earth bases 

leads to a decrease in the critical flow rate. 

1 Introduction 

At present, pipeline transport is of great importance for the economic development of many 

countries all over the world. The fluid-conveying pipelines are the structural elements of 

many engineering structures. Pipelines are used in oil and gas facilities, chemical plants, 

gas processing plants, nuclear power plants and so on. Pipeline transportation differs from 

other types of transportation in its efficiency, convenience and continuity of delivery to the 

designated project. However, accidental pipeline breaking can damage the environment and 

pose a risk to human life. Oscillations of individual sections of pipelines conveying fluid 

are a difficult problem to study. To date, many dynamic models have been developed for 

solving such problems. Basically, these models describe the stages of the processes in a 

pipeline conveying fluid and gas. A significant number of publications are devoted to 

solving linear and nonlinear problems of oscillations and dynamic stability of pipelines [1-

8]. 

Two-phase slug flows in pipelines occur in various processes in nuclear, oil and gas 

industry. Pipeline transportation of gas-containing fluid is accompanied by vibration effect 

on the pipeline, which, in some cases, leads to a rapid destruction of pipes. Accumulation 
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and non-uniform distribution of gas along the length of the pipeline lead to pulsating 

vibrations, and to the displacement of the center of gravity of the flow along the pipe cross 

section, as a result, the pipeline receives an additional dynamic load. 

A review of the literature that reflects the most up-to-date research progress in the field 

of oscillations caused by two-phase slug flow in pipelines is given in detail in [9]. In [10], 

the dynamics of pipelines conveying gas-containing two-phase slug flows is analytically 

and numerically analyzed. Parametric studies have been carried out to analyze the influence 

of the volume fraction of gas and volume flow on the dynamics of pipes conveying a two-

phase air-water flow. In [11], experiments have been carried out in horizontal air-water 

pipes with a diameter of 32 and 50 mm. The results of experiments are compared with the 

theory presented in the paper, as well as with the hydrodynamic models previously 

published. 

Currently, agriculture, oil and gas industry, and housing and communal services often 

face the problems in repairing, reconstructing, and restoring of pipelines due to the impact 

of various external factors. One of the ways to solve this problem is the use of modern, 

resource-saving, environmentally friendly technologies, which include the use of non-

metallic, in particular, polymer composite materials [12,13]. Therefore, the methods and 

problems of the theory of hereditary elasticity attract much attention of researchers. There 

are a significant number of publications devoted to solving problems of calculating the 

characteristics of viscoelastic pipelines [14-17]. 

From the above review, we can conclude that the development of adequate models for 

the problem of oscillation of a viscoelastic pipeline conveying two-phase slug flow which 

take into account the work of the viscoelastic earth base, is a rather complex and relevant 

research task, which is the main objective of this study. 

This paper is devoted to solving the above problems and its subject-matter is very 

relevant. 

2 Problem formulation 

Consider a viscoelastic pipeline in the form of a straight single-span beam hinged at both 

ends, lying on a viscoelastic base, described by the Winkler model. Choose a rectangular 

coordinate system so that the x-axis passes through the centers of gravity of the pipe 

sections in the supports with corresponding coordinates 0x   and x L . The 

displacements of the points of the pipeline axis along the y-axis represent an unknown 

function of the deflections w(x,t). The flow rate along the pipeline axis is U. Longitudinal 

oscillations of the pipeline are not taken into consideration. It is assumed that the motion is 

plane and the tube is nominally horizontal. The cross-sectional area of the flow is 

considered to be constant. 

A pipeline conveying the gas-liquid two-phase slug flow is shown in Figure1. In the 

pipeline, several consecutive sections of slug units can be observed. Fig. 2 shows the gas 

bubble zone, the length of which is L1, and the liquid slug zone, the length of which is L2. 

The length of the pipeline is L (L=L1+L2). 

 
Fig.1. Diagram of a pipeline conveying gas-containing two-phase slug flow 
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. 

 
Fig.2. Diagram of a stable slug unit. 

 

Based on [18], the equation of motion of the pipelines conveying a two-phase slug flow, 

considering the viscosity properties of structure and base material has the form: 
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Here E is the modulus of elasticity of material; I is the moment of inertia of the pipeline 

section; EI is the bending stiffness of the pipe; w is the pipeline deflection; L is the length 

of the pipe between the supports; x is an independent variable, the longitudinal axial 

coordinate of the pipe; w(x, t) is the deflection in the section x at the point in time t; Lm , 

gm  and  pm  are the masses of fluid, gas and pipe, respectively, related to the unit length 

of the pipeline; 0A is the cross-sectional area of the pipe; LU , 
gU are the fluid and gas flow 

rates; 1k is the bed coefficient of a viscoelastic base; 0N is the compressive (tensile) force;

R
, 

*
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,10,0,0  А 10,0,0 111  А ; 

t   is the observation time;  is the time point preceding the time of observation; 1, АA  are 

the viscosity parameters; 1,   are the attenuation parameters; 1,  are the singularity 

parameters determined by experiment. 

Equation (1) is solved under the following boundary conditions 
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where ( )x ,  ( )x  are the given, smooth enough, functions in the field of arguments 

change. 

3 Discretization and method of solution 

Approximate solution of equation (1) is sought in the form: 
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where  nw t  are some functions to be defined, and functions  n x are selected so that 

each term of the sum (5) satisfies the boundary conditions. In the case of a pipe hinged at 

the edges in the Bubnov-Galerkin method expansion (5), the approximating functions of the 

deflection are chosen in the form 
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Substitute the function (5) into equation (1) and apply the Bubnov-Galerkin procedure 

to the latter. In the process of integration of equation (1) from 0 to L, flow parameters, 

including mass per unit length and flow rate for the gas and liquid phases located in the gas 

bubble zone and the liquid slug zone, are integrated separately in the interval from zero to 

L1, and from L1 to L (Figure 2). After simple transformations, a system of integro-

differential equations for the coefficients (5) is obtained. 
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3.1. Numerical procedure of solving the algebraic system 

Then, the numerical method is applied to the system (7), which describes the problem of 

pipeline oscillations [17, 19-21]. Based on this method, an algorithm for the numerical 

solution of system (7) is described. By integrating system (7) two times over t, writing it in 

integral form and using a rational transformation, the singularities of the integral operators 

R
*
 and 

*

1R  are excluded. Then, setting t=ti, ti=i∙∆t,i=1,2,… (∆t =const) and replacing the 

integrals with the quadrature trapezoidal formulas to calculate  ik k iw w t , we get the 

formulas for the Koltunov-Rzhanitsin kernel     







  10,exp 1  ttAtR

. 

Thus, according to the numerical method for the unknowns, a system of algebraic 

equations is obtained [21-25]. To solve the system, the Gauss method is used. On the basis 

of the developed algorithm, a package of applied computer programs has been created. The 

results of calculations are presented in Table  and reflected in graphs, Figures 3 and 4.  

4 Numerical results and discussion 

Results of calculations are presented in the table. The table shows the critical gas flow rates 

determined by formula (7). At rates, when u>ucr, the oscillatory motion occurs with 

intensely increasing amplitudes and can cause the collapse of the structure, and in the case 

when u<ucr, the oscillation amplitude attenuates. Note that for u>ucr, the expansion of (7) 

diverges. Here, the ucr is the critical rate of two-phase slug flow. 

The study of the effect of viscosity is given. Calculations have shown that an account of 

viscous resistance leads to 40% decrease in the critical flow rate compared with the elastic 

solution. At A= 0 and A = 0.1, the critical rate of gas flow is 2.89 and 1.73, respectively. 

Studies have shown that in the special case the results of numerical modeling are consistent 

with the results obtained in [26]. With an increase in singular parameter , the critical rate 

of the gas flow increases. This effect is more noticeable at  = 0.75, than at  =0.1. 

Numerical results show that the effect of the damping parameter  in the heredity kernel on 

the critical flow rate, as compared with the viscosity parameter A and the singularity 
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parameter , is insignificant. With an increase in this value, the flow rate decreases, but 

only slightly. The obtained value of the critical flow rate for a viscoelastic pipe at  = 0.07, 

is only 3.9% less than the values of the flow rate at  = 0.01. 

An increase in parameter
wk  leads to a significant change in the critical flow rate for the 

gas phase. Studies have been performed at 
wk = 0; 10; 30 and 40. 

Table 1. Dependence of the critical flow rate of a two-phase slug fluid on physico-mechanical 

and geometrical parameters of pipelines 

 

A  
α β 

1
γ

 
wk

 
1L

 
1A

 
1α  1β  0N

 
Lu

 
gсru  

0 

0.001 

0.01 

0.1 

0.25 0.05 0.005 3.5 0.3 0 0.25 0.05 0.01 1.5 2.89 

2.874 

2.79 

1.73 

0.01 0.1 

0.5 

0.75 

0.05 0.005 3.5 0.3 0 0.25 0.05 0.01 1.5 2.682 

2.81 

2.82 

0.1 0.15 

0.5 

0.75 

0.05 0.005 3.5 0.3 0 0.25 0.05 0.01 1.5 1.45 

2.1 

2.3 

0.1 0.25 0.01 

0.07 

0.005 3.5 0.3 0 0.25 0.05 0.01 1.5 1.78 

1.71 

0.1 0.25 0.05 0.005 0 

10 

30 

40 

0.3 0 0.25 0.05 0.01 1.5 1.7 

1.95 

2.4 

2.6 

0.1 0.25 0.05 0.005 3.5 0.1 

0.5 

0.7 

0 0.25 0.05 0.01 1.5 1.7 

1.66 

1.59 

0.1 0.25 0.05 0.005 3.5 0.3 0.001 

0.1 

0.2 

0.25 0.05 0.01 1.5 1.72 

1.61 

1.56 

0.1 0.25 0.05 0.005 3.5 0.3 0.1 0.05 

0.3 

0.7 

0.05 0.01 1.5 1.52 

1.64 

1.74 

0.1 0.25 0.05 0.005 3.5 0.3 0.1 0.25 0.05 0.1 

2.3 

5.5 

10.5 

1.5 1.76 

2.3 

2.9 

3.67 

 

It is seen that with an increase in density of earth bases the critical gas flow rate 

increases. 

The effect of external tensile forces in longitudinal direction of the pipeline has been 

studied. The table shows that an increase in the tensile forces in longitudinal direction of 

the pipeline leads to an increase in the critical flow rate for the gas phase. At 
oN = 0.1 and 

oN = 10.5, the critical flow rate for the gas phase is 1.76 and 3.67, respectively. On the 

contrary, compressive forces oN lead to the same proportional reduction of the critical 

flow rate for the gas phase. 

The table shows that an increase in the value of the viscosity parameter A1 of bases 

leads to a decrease in the flow rate. Let’s study the effect of the singularity parameter 1  of 

the earth bases on the flow rate. With an increase in parameter 1  from 0.05 to 0.7, the 
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difference in critical rates determined by formula (7) increases by 14.5%. For example, at 

1 = 0.05 the flow rate is 1.52, and at 
1 = 0.7 the flow rate is 1.74. 

The effect of the parameter 1L characterizing the length of the gas bubble zone on the 

critical flow rates for the gas phase is investigated. It is found that with an increase in the 

parameter 1L , the critical flow rates for the gas phase decrease, which is explained by the 

fact that with an increase in the length of gas bubble zone the fluid rate in the gas bubble 

zone is much less than in the liquid slug zone, especially when the length of the pipe is 

large. 

The effect of the viscoelastic properties of material on the pipeline behavior is 

investigated. Figure 3 shows the law of distribution of the pipeline deflection with account 

of viscoelastic properties of material and its development over time. For elastic pipelines 

the oscillations are almost periodic. As we see, an account of viscoelastic material 

properties of the structure sharply decreases the amplitude of oscillations. Meanwhile, the 

effect of the viscoelastic properties of pipeline material on the amplitude of its oscillations 

at the beginning of the process (part of the curve w(t) in the range of 0t0.2) is manifested 

to a much lesser extent. Beginning from τ0,2, the viscoelastic properties of material 

significantly affect the oscillatory process of the pipeline. Analysis of the results shows that 

an increase in the value of the viscosity parameter A leads to a damping of the oscillatory 

process. These conclusions and results are fully consistent with the conclusions and results 

in [1, 21, 26, 27].   

 

 
Fig. 3. Dependence of the pipe deflection w on time t at various parameters of viscosity: A=0 (curve 

1); A=0.05 (curve 2); A=0.1 (curve 3); α=0.25; β=0.05; 3.5;wk  1 0.3;L  1 0.005; 

1 0.01;A  1 0.25;  1 0.05;  0.01;oN  0.3;Lu  0.5.gu   
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Fig. 4. Dependence of the pipe deflection w on time t at wk =4.8 (curve 1); wk =5.1 (curve 2); 

A=0.01;  α=0.25; β=0.05; 1 0.3;L  1 0.05;  1 0.01;A 
1 0.25;  1 0.05; 

0.01;oN  1.5;Lu  2.81.gu   

 

Studies of the effect of the base parameter 
wk on the oscillatory process (Figure 4) are 

given. As seen from the graph, dynamic instability is observed for both values of earth base 

wk = 4.8 (curve 1) and wk = 5.1 (curve 2) at the rate 1.5Lu  and gu =2.81, the motion 

is the oscillations with rapidly increasing amplitudes. The following parameters have been 

used in the calculation: A=0.01; α=0.25; β=0.05; 1 0.3;L 
1 0.05; 

1 0.01;A  1 0.25; 

1 0.05;  0.01oN  .  

5 Conclusions 

A mathematical model of the dynamics of a straight viscoelastic pipeline conveying two-

phase slug flow has been developed. A computational algorithm has been developed for 

solving the problems of the dynamics of viscoelastic pipelines with conveying two-phase 

slug flow. On the basis of the developed computational algorithm, a package of applied 

computer programs has been created; it makes possible to investigate the oscillatory 

processes of viscoelastic pipelines conveying gas-containing two-phase slug flow. When 

modeling nonlinear problems, a number of dynamic effects have been investigated: 

- it was established that the viscoelastic properties of the pipeline material lead to a 

decrease in the critical flow rate of the gas-containing two-phase fluid; 

- it was found that an increase in the length of the gas bubble zone leads to a decrease in 

the amplitude and frequency of the pipeline oscillations; 

- it was shown that an account of viscoelastic properties of earth bases leads to a 

decrease in the critical flow rate; 

- it was found that an increase in the density of earth bases leads to an increase in the 

critical flow rate of the gas phase. 
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