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Abstract. Iron oxide-coated gravel as an adsorbent was employed in continuous fixed bed column study to 
remove Fe(II), Ni(II), and Zn(II) simultaneously in synthetic leachate samples. Experimental and modeled 
adsorption capacities derived from the breakthrough curves showed the adsorption capacity order of 
Zn(II)>Fe(II)> Ni(II). Iron oxide-coated gravel column removed 58.24% of Zn(II), 47.71% of  Fe(II), and 
39.45% of Ni(II). Desorption process was studied in order to test the regeneration capability of iron oxide- 
coated gravel. It was seen that 99.64 % of Ni(II), 99.54% of Fe(II) and 6.75% of Zn (II) were recovered 
through the first cycle of adsorption/desorption. In the second cycle, the recovery rates dropped to 81.4% 
for Ni(II), 80% for Fe(II) and 4% for Zn(II).  Based on these results, iron oxide coated gravel has potential 
to remove mixed metal ions simultaneously in aqueous solutions.  

1 Introduction 
High metal concentrations in landfill leachates stem 
from increasing amounts of electronic wastes, batteries, 
paints and treated woods in mainstream solid wastes[1, 
2]. It was reported that improper management of 
leachate can pollute environment to a significant extent 
[3-5]. For that reason, reduction of these metals with 
effective treatment methods bears critical importance. 

Removal of inorganic and organic materials from 
wastewater samples has been widely carried out through 
low cost adsorbents such as limestone, zeolite, gravel, 
sand, peat and industrial waste [6]. Furthermore, external 
coating of these materials with iron oxide causes changes 
in the morphology of the surfaces, and this produces 
novel adsorption sites having high levels of surface 
defects and reactive surface sites with greater intrinsic 
reactivity[7-9]. Iron oxide-coated adsorbents removed 
metals, oxyanionic metals and bacteria [9-20]. Fixed bed 
studies conducted with iron oxide-coated zeolite showed 
the removal order of  Pb(II) > Cu(II) > Cd(II) > Cr(II) > 
Zn(II) [7]. In addition, a fixed bed column composed of 
iron oxy hydroxide-coated brick showed the removal 

Cu(II)[21]. Iron oxide-coated sand in a column showed 
the adsorption order of Cr(VI)>As(V) [22] A column 
study utilizing zeolite-supported microscale zero-valent 
iron as adsorbent showed more adsorption for Pb(II) than 
Cd(II) [23]. Another study showed that almost all Cu(II) 
and 80% of Zn(II) could be removed in a column reactor 
containing iron oxide-coated gravel [19]. In a similar 
way, iron oxide-coated sand in a fixed bed column 
system  removed 80% for  Cu,  90% for Pb, and 98% for 

Cd[24]. Morever, iron oxide-coated sand and limestone 
in a column removed 98.5% of iron and 95% of 
arsenic[25]. Iron oxide-coated peat in up-flow columns 
simultaneously removed more than 99% of Cu and 90% 
of Zn[26]. Nano-sized iron oxide-coated sand in a 
continuous column study removed 90.8% of turbidity, 
73.3% of Pb, 75.8% of Zn, 85.6% of Cd and 67.5% of 
PO4 in a synthetic urban runoff [27]. A previously 
reported study showed that iron oxide-coated gravel 
(IOCG) in a column study showed initial removal of  
96.5% of Cu(II), 94.8% of Pb(II), 90% of Cd(II), 84% of 
Fe(III) and 67% of  Al(III) at pH 7  [28]. 

A limited number of studies reported the removal 
efficiency of IOCG in aqueous solutions for individual 
ions and mixed metals. Since multiple metal ions coexist 
together in waste water, studies aiming at simultaneous 
removal of mixed metals will carry more importance 
towards the implementation of the results in large scale 
systems. In this study, IOCG as an adsorbent was 
employed in a fixed bed column study to remove Fe(II), 
Ni(II), and Zn(II) simultaneously from high strength 
synthetic leachate samples. Adsorption/desorption 
studies were conducted to evaluate the reusability of 
IOCG. It is expected that the results of this study will 
provide a framework in the prediction and evaluation of 
simultaneous metal ions uptake with IOGC in industrial 
applications.  

2 Materials and Methods 

2.1 Filter media preparation  
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The gravel used in this study was purchased from 
Marinara Transport, Abu Dhabi/UAE. It was made up of 
local rock fragments. The gravel with an average 
diameter of 2 mm-2.38 mm was chosen in order prevents 
clogs and high head losses in the filters. Surface coating 
of the gravel was performed following our one of 
previous studies [5]. The characterization of gravel and 
IOCG was performed using scanning electron 
microscope (SEM), energy-dispersive X-ray (EDX), x-
Ray diffraction (XRD), and Brunauer-Emmett-Teller 
(BET) surface area analysis, and the details were 
reported and explained in our previous studies [5, 28, 29]. 

2.2 Synthetic leachate preparation 

The synthetic grade leachate was prepared following an 
established reported protocol[5]. All chemicals were 
purchased from Fisher Scientific and were of analytical 
reagent grade. An Atomic Absorption Spectrometer 
(AAS), Varian FS220, was used to measure the 
concentrations of the metal ions. The pH of the leachate 
samples was measured with a Hach multimeter, HQD4D. 

2.3 Column adsorption studies  

In this study, acrylic flow cell columns having end plate 
assembles and screens made of two mesh stainless steel 
were used. The measurements were run in duplicates and 
the average values were used in the data analysis. The 
empty columns were cleaned with 3% of nitric acid 
solution to remove any residual organic contaminants.  
Samples of synthetic leachate were mixed with a 
magnetic stirrer and pumped through the columns 
upward using a peristaltic pump (Welch Model 3200) to 
be able to prevent channeling from gravity as shown in 
Figure 1.  

 

Figure 1. Column set up 

The operational parameters with the column 
specifications are listed in Table 1. Leachate flow was 
stopped at time t when the concentration of a particular 
metal ion in the effluent reached to 98% of its initial 
concentration according to the formula Ct= 0.98xCo 
where Ct is the metal concentration at time t and Co is the 
initial metal concentration in the leachate sample.  The 
pH of the samples were adjusted to 7 for the maximum 
efficiency of metal removal based on the result of a 
previous study using IOCG[5]. Effluent samples were 
collected at different time periods, filtered using 0.45 µm 

syringe filter, and then analyzed with AAS to measure 
the concentrations of metal ions.  

Table 1. Operational parameters and column specifications for 
column setup 

Operational Parameter Value 
Detention time (packed) 5 min 

Total porosity* 0.25 
Feed flow rate 15 mL/min 

Operating temperature 23±1 oC 
IOCG weight 107.06 gr 

Active bed volume 76.96 cm3 
Total height of column 35 cm 

Active height of column 15 cm 
Inner diameter of the column 2.54 cm 

*pt: (1-Vs/Vt), pt: total porosity, Vs: soil particle 
volume, Vt: Total volume 

The total adsorbed metal ion, qtotal (mg), is equal to 
the area under the plot of the adsorbed ion concentration 
Cad (Cad=C0–Ct) (mg/L) versus time (min) and can be 
calculated from Eq. (1): 

 ( ) =  . =                                
(1) 

The dynamic adsorption capacity, qe (mg/g), was 
calculated from Eq (2):  

=                                                                       (2) 

The removal efficiency of ions was calculated from 
the ratio of total adsorbed metal ions in the column to the 
total amount of metal ions sent to the column based on 
Eq. (3): 

= 100                                            

(3) 

The modeled column adsorption capacities were 
calculated based on the Thomas model given below,  

1 =                                   (4) 

The linear plots of ln [( 0/  versus  based on 
the results in column experiments were generated to 
derive the th and 0 values which correspond to the 
slope and intercepts in the graphs.  

2.4 Column desorption studies 

The ability to regenerate IOCG was tested through two 
cycles of adsorption/desorption process. Exhausted 
IOCG containing adsorbed metal ions were passed 
through 0.1 M of HCl solution with a 15 mL/min flow 
rate. Effluent samples at different time periods were 
collected in order to determine the desorption ratio[5].  
Desorption ratio was calculated based on the following 
formula:  
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Desorption ratio(%):       
    

100    (5) 

3 Materials and Methods 

3.1 Fixed-bed column experiments 

Adsorption of heavy metals by IOCG in a fixed bed 
column study was presented as Ct/Co per day as shown in 
Figure 2. For a constant flow rate, 96.5% removal for Zn 
(II) and 77% removal for Fe(II) in 5 days and 78% 
removal for Ni(II) in 3 days were observed during the 
study. Removal rates dropped afterwards. Percent 
removal became 0 after 21 days of operation for Fe(II), 
15 days for Ni(II) and 17 days for Zn(II). 

Dynamic adsorption capacity along with exhaustion 
times and total percent removal for metal ion on IOCG 
were given in Table 2. A previous study with batch 
experiments showed that 98.8% of Fe(II) , 88% of Ni(II), 
and 94% of Zn(II) can be removed[5]. Furthermore, 
when compared with a previous batch study, it was 
found that the removal efficiency of IOCG in fixed-bed 
columns decreased as a result of decrease in contact time 
and decrease in contact between adsorbate and adsorbent. 
This situation resulted in lower retention times for the 
adsorption process to reach equilibrium which was also 
argued in another study[30]. 

 

Figure 2. Breakthrough curves corresponding to Fe(II), Ni(II), 
and Zn(II) ions in leachate samples 

Table 2. Exhaustion times, percent removals and dynamic 
adsorption capacity 

Ions qe (mg/g) te (days) %Removal 
Ni(II) 2.5 15 39.45 
Fe(II) 11.29 21 47.71 
Zn(II) 13.24 17 58.24 

The dynamic adsorption capacity order for metals 
was Zn(II)>Fe(II)>Ni(II) which correlated with the 
solubility of hydroxides (pKsp: Ni:15.2, Zn: 16.5, 
Fe2+:16.31) as well as the hydrated radius (Zn: 4.30Ao, 
Ni:4.04Ao, Fe+2:4.28Ao) [31, 32] . It is apparent that the 
solubility products (Ksp) and the hydrated radius of 
metals are inherently related to their adsorption 
capabilities. Ions having smaller hydrated ionic radius 
are expected to diffuse easier and faster onto the surface 
of the adsorbent, and as a result they can accumulate in 
the cracks and channels more as compared to metal ions 
with larger hydrated radius. Ions with smaller hydrated 

ionic radius are able to move closer to the adsorbent 
surface and easily enter the channels in the adsorbent for 
preferential adsorption[31]. It could be argued that Zn(II) 
has a strong affinity towards IOCG on the basis of its 
higher percent removal rate and its dynamic adsorption 
capacity. Lower removal efficiency of Ni(II) could be 
explained with the concept of charge repulsion. In 
aqueous solutions with pH<8, nickel ions prefers Ni2+ 
form, and they compete with H+ ions for the negatively 
charged surfaces on the IOCG. As a result, reduced Ni(II) 
removal rate could be observed[33]. In parallel, another 
study reported that Ni(II) adsorption was considerably 
lower in the presence of Cu(II) which competed with 
Ni(II) for available adsorption sites.  Another reason for 
the lower Ni (II) removal rate could be lower retention 
time for Ni(II) to interact with IOCG. 

It was noted that the shape of the breakthrough curve 
is not classical S shape. Another study reported that 
mixed metal solutions give different breakthrough 
curves[5]. Furthermore, different breakthrough curves 
could be obtained for a particular metal ion when other 
metal ions are present due to the differences in their 
adsorption abilities [2, 34]. 

The breakthrough behavior of metal ions in the 
leachate samples were analyzed and described in a 
satisfactory manner using the Thomas model. Using this 
model, q0 and kth corresponding to the three metal ions 
were calculated. It was shown that IOCG displayed high 
loading capacity toward these ions in the column studies 
in which the uptake rate ranged between 15.34 mg/g to 
2.95 mg/g as shown in Table 3. A previous study showed 
that IOCG achieved metal ion uptakes of  66.82 mg/g for 
Cu(II), 26.5  mg/g for Pb(II), 23.33 mg/g for Cd(II), 1.87 
mg/g for Al(III), and 0.56 mg/g for Fe(III)[28]. Oher 
studies showed similar results; iron oxide-coated 
Australian zeolite performed metal ion uptakes of 0.89 
mg/g for Cu(II), 0.93 mg/g for Cd(II), and 0.83 mg/g Zn 
(II); iron-impregnated activated carbon displayed 2.746 
mg/g for Cu(II) uptake[7, 8, 14]. The correlation 
coefficients of Thomas model (R2 ranging between 0.95 
to 0.97) for these ions were very high, and it indicated 
that this model was a suitable tool to study IOCG 
adsorption capacities.   

Table 3. Constants corresponding to the removal of metal ions 
in leachate using Thomas model  

Ions qo (mg/g) kth (L/mg.h) R2 
Ni(II) 2.95 0.009805 0.95 
Fe(II) 11.104 0.0012 0.97 
Zn(II) 15.34 0.0023 0.96 

A high correlation was observed between 
experimental and modeled adsorption capacities 
indicating the applicability of the Thomas model to 
predict IOCG sorption on metals shown in Table 4.   

Table 4. Comparison of experimental and modeled 
adsorption capacities 

Ions qo (mg/g) qe (mg/g) 
Ni(II) 2.95 2.5 

3

E3S Web of Conferences 122, 01002 (2019) https://doi.org/10.1051/e3sconf/201912201002
REEE 2019



 

Fe(II) 11.104 11.29 
Zn(II) 15.34 13.24 

3.2. Desorption experiments  

The efficiency of metal ion recovery was tested through 
two cycles of adsorption/desorption process, and in the 
first cycle the recovery rates of 99.64 % for Ni(II), 99.54% 
for Fe(II) and 6.75% for Zn (II) were obtained as shown 
in Figure 6. In the second cycle, the recovery rates 
dropped to 81.4% for Ni(II), 80% for Fe(II) and 4% for 
Zn(II). The apparent decline in the recovery of metal 
ions in the second cycle could be attributed to the 
dissolution of iron oxide coating upon exposure to 0.1 M 
HCl solution for the regeneration process [7, 35]. 
Nevertheless, the adsorption capacity of regenerated 
IOCG is still high, and this finding verifies its potential 
for multiple cycles of metal uptake. 
 

  

Figure 6. Desorption of metals (black color refers to first cycle 
and grey color refers to second cycle of adsorption/desorption 
process 

Nomenclature 
qe = dynamic adsorption 
capacity, mg/g  
C0 = initial 
concentration of heavy 
metal (mg/L)  
V = volume of the 
solution (L)  
m = mass of adsorbent 
(g). 
qe = max. amount 
adsorbed, mg/g IOCG 

kTh = Thomas rate 
constant (L/mg.h),  
q0 = Thomas modeled 
column adsorption 
capacity (mg/g), 
Ct = outlet 
concentration at time t 
(mg/L), 
Q = flowrate (mL/min) 
and  
t = filtration time (min) 

4. Conclusion  

In this study IOCG was incorporated into column 
experiments in order to test its efficiency to remove 
multiple metal ions simultaneously in high strength 
leachate samples. Zn(II) ion showed the strongest 
affinity toward IOCG based on its high breakthrough 
time. Charge repulsion could be invoked to elaborate the 
lower removal rate of Ni(II). Loading capacities of metal 
ions under dynamic conditions were derived using 
breakthrough data, and the results showed that IOCG 
could effectively remove these ions. The experimental 
and modeled adsorption capacity order was Zn(II)> 
Fe(II) > Ni(II) with the average removal rate of 58.24% 

for Zn(II), 47.71% for Fe(II), and 39.45% for Ni(II). The 
two cycles of adsorption/desorption study demonstrated 
that IOCG could be regenerated and reused in metal 
uptake studies albeit with an apparent decline in the 
adsorption capacity in the second cycle due to the 
dissolution of its iron oxide coating.  Notwithstanding 
this observation, it seems obvious that IOCG is a 
potential material in the removal of metal ions 
simultaneously from landfill leachate. It could be 
incorporated into various column designs in fixed bed 
reactors, and it could be adapted to pilot or large-scale 
systems in industrial applications. In summary, our work 
could provide and inspire an initial framework for 
further studies.  
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