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Abstract. Wind power constitutes a variable energy source that introduces unbalance in electrical network 
management because it cannot be programmed. Then, the possibility of storing wind energy becomes very 
important. The lack of control is a drawback that disappears when the combination of a wind farm (WF) and 
a battery energy storage system (BESS) is considered. In that case, the goal is to adjust the power plant 
output and the load requirements of electrical network, i.e., to contribute to system adequacy as much as 
possible. Considering the features of the problem, it can be defined as an optimization problem. Two 
algorithms are proposed to solve it: the primal dual algorithm and the Mehrotra predictor-corrector one. In 
both cases, the best solution of the proposed problem is reached in an efficient manner. The primal dual 
algorithm performs better in terms of time and the Mehrotra predictor-corrector one needs fewer iterations.

1 Introduction  
The lack of control in electrical network management 
due to wind power grows with the installed wind power. 
Therefore, in order to improve the balance between 
generation and consumption in the electrical network, 
storage systems need to be installed altogether with wind 
farms. The main objective of having the capability to 
store wind power is to inject the power into the electrical 
network when needed, combining periods of decreasing 
wind farm production and increasing ones. The power 
surplus has to be stored somewhere and is given back 
when wind farm production is not enough to supply the 
required power. 

Among others, a BESS is a profitable mean to store 
wind power due to its efficiency, adaptability and no 
need of specific installation conditions. 

When dealing with a system formed by a WF and a 
BESS, the first issue to consider is the battery size [1,2], 
which is critical. However, it is not dealt with here and 
the value used in the case study is based on a real power 
plant. The equations and constraints that define the 
behavior of the system were obtained from [3-11].  

Another issue is the application time interval of the 
BESS, that can be in an hourly, daily, weekly or monthly 
term [12], but in this paper the objective is particularized 
to a daily term. Besides, the prediction is not considered 
here, it is assumed that the wind speed is known with 
enough anticipation to apply the algorithm, which is 
realistic due to the daily term analyzed. 

It is also important to consider the model used for the 
BESS. Several models appear in the related literature 
[7,13,14] and they have been simplified here, 

considering certain efficiency value during the charging 
and discharging processes.  

Finally, it is also important to decide the optimal 
allocation of the BESS in the network and its 
configuration [15-17]. In this paper, the BESS is located 
adjacently to the WF and the chosen configuration is 
dual inverter [17]. 

Then, in order to carry out a strategy based on the 
adaptation of the wind power produced by a power plant 
made up by a WF and a BESS, to the power requested 
along a period, an optimization problem arises. The 
objective should be that the power plant generates more 
power when it is more valuable. However, the power 
plant will have some technical constraints that limit its 
operating capacity, most of them related with the BESS 
but also with the whole installation, turning the 
optimization problem into a non-linear one. 

Linear programming [18,19] is a part of 
mathematical optimization, which deals with the kind of 
problems where a linear objective function must be 
optimized, being subject to a set of linear constraints. 
Due to the specific circumstances of this type of problem, 
its optimal solution has to be located on the border of the 
set of feasible solutions. In those cases, the simplex 
algorithm is a good option to obtain the optimal solution. 
However, this algorithm goes over the border, trying to 
find the optimal one and, when dealing with a lot of 
variables and restrictions computation, the time 
consumption results very high. As an alternative to this 
algorithm there is the possibility of designing an 
algorithm that goes through the interior of the set of 
feasible solutions until the optimal one is reached. This 
algorithm is known as interior point algorithm [20]. 
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In 1979, Leonid Kachiyan [21] designed an interior 
point algorithm, the ellipsoid algorithm, and proved that 
a linear programming problem can be solved efficiently 
in proper time by means of it. Later on, in 1984, 
Narendra Karmarkar introduced the interior point 
algorithm of projective transformation with great success 
[22]. In Karmarkar’s work, primal-dual algorithm [23] 
and Mehrotra predictor-corrector one [24] are used to 
solve this type of optimization problem. 

The organization of this paper is the following: 
section 2 includes the concepts, expressions and 
constraints to be considered in a hybrid WF-BESS 
system, section 3 explains the primal-dual algorithm, 
section 4 is an outline of the Mehrotra predictor-
corrector algorithm, in section 5 the application of both 
algorithms to the problem proposed is given and the 
conclusions are stated in section 6. 

2 Power Supplied by a Wind Farm with 
a BESS 
A power plant consisting of a WF and a BESS is 
considered in this section. The equations and constraints 
that describe the behavior of this type of power plants 
are presented. 

Generally speaking, the power plant output in a time 
interval is the sum of the power supplied by both the WF 
and the BESS in the same interval, as in (1). 

P = P + P        i = 1, … , n               (1) 

where n  is the number of intervals assessed, P  is 
the power provided by the power plant in the interval i, 
P  is the power provided by the BESS to the electrical 
network in the interval i and the power supplied by the 
WF in the interval i is named P . Notice that, in case 
that P  is negative, it means that the total power 
provided to the electrical network is lower than the 
power supplied by the WF, but during this time interval, 
the BESS receives the rest of the power. 

On the other hand, in eq. (2) the charging process of 
the BESS is expressed. The energy stored in the BESS in 
an interval is obtained as the sum of the energy 
previously stored in the BESS and the energy received 
during the interval. Notice that, the energy received is 
the product of the power provided by the BESS and the 
length of the interval with negative sign as expressed in 
(2). The reason for the negative sign is that  P  is 
defined as positive when supplied. 

E = E - T P         i = 1, … , n             (2) 

where E  is the energy stored in the BESS in the 
interval i and T is the interval length. Therefore, the 
possibilities are: E > E  during the charging 
process, E < E  if the BESS is discharging or 

=  in case there is no power from or to the 
BESS during the interval. There are losses during the 
charging and discharging processes and some kind of 
efficiency has to be considered. However, those losses 
are not taken into account here due to the complexity of 
the problem. Once the problem is solved, those losses 
can be assessed. 

The constraints that must be considered to apply 
equations (1) and (2) are the following: 
i) BESS minimum and maximum charge levels (3): 
The reason for establishing a minimum charge level is to 
extend its useful life. The maximum charge level of the 
BESS is given by its maximum energy storage capacity. 
So, on each interval, constraints shown on (3) have to be 
taken into account. 

E E  E       i = 1, … , n                   
 (3) 

where E  is the minimum charge level and 
E  is the maximum charge level of the BESS. 
ii)  Maximum power transferred to or from the BESS 
(4): These limits are due to the heating processes that 
appear when charging or discharging the BESS. 
Therefore, there are constraints in both directions and the 
minimum one is negative. 

       = 1, … ,           (4) 

where P  is the maximum power that can be 
transferred to the BESS in absolute value. P  is the 
maximum value of power that can be provided by the 
BESS. 
iii) Maximum and minimum level of power that can be 
supplied by the power plant (5): The reason for those 
levels is the installation configuration, because the limits 
depend on the whole power plant: it cannot consume 
power and the output power has to be between zero and 
its rated power. 

0 P  P       i = 1, … , n            (5) 

where the rated power of the power plant is P . 
Therefore, the optimization problem to be solved can 

be summarized as in (6), considering the relationships in 
(1) and (2). 

max f = P
 

s. t.
E E  E
P P  P

0 P  P

 (6) 

where  are the weights of each time interval i and 
define comparatively the need to supply power. 

They are squared in order to adapt the solution to the 
characteristics of the problem. 
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3 Primal Dual Algorithm 
In this section, a full explanation of the primal dual 

algorithm is given in order to let the reader know the 
process to obtain the solution of the proposed 
optimization problem. 

3.1 Main idea 

The primal-dual algorithm is based on the use of a 
logarithmic barrier. The idea is to replace the border of 
the feasible set by an element in the objective function 
that penalizes its value as it is approached. For example, 
it is supposed a standard linear programming problem, 
such as the one defined in (7): 

 min f =  c x
Ax = b
x  0

              (7) 

where f is the objective function, x is the vector of 
variables of the primal problem and Ax = b  is the 
constraint of the minimization problem. 

The equivalent problem given by (8) can be obtained. 

 min f =  c x- log (x )
Ax = b

 0
   (8) 

where the parameter µ is called the barrier parameter. 
Considering the standard format of a linear 

programming problem and its dual, (9), [25,26] 

 min =  
=

 0
       

 min =  
+ =
 0

   

    

 

(9)                               

where y is the vector of variables of the dual problem 
and s is the slack vector. 

The following assumptions are made for the primal-
dual algorithm: 
i) The set of solutions of the primal problem, named 
S, is not empty. 

=  {   : = , > 0 }    

ii) The set of solutions of the dual problem, named T, 
is not empty. 

=  { ,   , : + = , > 0 }    

iii) The range of A is maximum. 
Considering these constraints, it can be stated that 

both problems, primal and dual, have optimal coincident 
solutions. Besides, the feasible regions of both problems 
are bounded. 

The logarithmic barrier function is applied to the sign 
constraints in both problems, following the process 
explained above as in (10). 

 min c x- log (x )
Ax = b

          

 max b y +  log (s )
A y + s = c

s 0
y not constrained

     (10) 

As  0 , it can be expected that the optimum 
solution of the problem P  (Eq. 10-top) converges to the 
optimum solution of the original primal problem. In 
order to prove it, it is considered that the objective 
function is strictly convex and additionally using the 
duality theorems (Karush-Kuhn-Tucker conditions, KKT 
[18]), the system (11) is obtained. 

Ax = b
A y + s = c
XSe- e = 0

x > 0
s > 0

 
   

(Primal Feasibility)
(Dual Feasibility)

(Th. Compl. Slackness)
 (11) 

where A and S are diagonal matrices with the values 
of the variables x and s, and e is a vector of ones. 

From the assumptions i, ii and supposing that the 
feasible region of the primal problem is bounded, it can 
be derived that the problem P  is feasible and it has just 
one minimum in x( ) for each > 0. Therefore, the 
system in (11) has just one solution. 

The system in (11) also provides the necessary and 
sufficient conditions (KKT) for y( ) and s( ) to be the 
maximal of the problem D  (Eq. 10-bottom). 

When the condition iii) is true, variable x determines 
uniquely the variable y from (11). Besides, the duality 
gap can be expressed as in (12). 

c x( )- b y( ) = c - y( ) A x( ) = n   (12) 

Therefore, as  0 the duality gap tends to zero 
and it implies that they are the optimal solutions of the 
primal and dual problem. 

So the set of optimum solutions of the types of 
problem P  and D  form a path to the optimum solution 
of the original problem. 

Therefore, this algorithm starts from an initial point 
(x , y , s ) , after which a sequence of points is 
generated, (x , y , s )   S, T , choosing a movement 
direction and right step size, . 

3.2 Movement direction and step size 

This is one of the fundamental stages of the algorithm 
and Newton method is used on it. 

Newton method consists of a procedure to treat the 
solution of a system of nonlinear equations by means of 
the consecutive approximation of the system by linear 
equations. For example, dealing with a nonlinear 
function, F(z), defined from R  to R , treating to find 
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a vector z that nullifies the function. Using the 
multivariable series of Taylor, a linear approximation 
can be obtained, as in (13) 

( +  )  ( ) +  ( )     (13) 

where J is the Jacobian matrix of function F(  ), with 
the rows formed by the partial derivatives of the 
respective functions of F(  ) . Each element can be 
expressed as in (14). 

( )   (14) 

As the intention is to assess the root F(z) = 0, the 
system in (15) is obtained. 

J z z =  -F z     (15) 

The solution to this system permits to iterate from z  
to z  with a unit step. This method converges 
quadratically when the starting point z  is located close 
to the solution, but this good convergence is just a local 
behaviour. In a nonlinear generic case, if the starting 
point is located far from the solution, the Newton 
method can fluctuate permanently without reaching the 
solution 

When applying the Newton method to the system in 
(11), in order to move from a given point (x , y , s ) 
to another (x , y , s ), so that x and y are no 
negatives, the system in (16) is obtained, providing the 
Newton directions corresponding to each variable. 

A 0 0
0 A I
S 0 X

d
d
d

=  - 
Ax - b

A y +  s - c 
X S e- e

 (16) 

Developing the system (16), the relationships in (17) 
are obtained. 

Ad = r
A d +  d = r  

S d +  X d = r
  (17) 

where: 

r
r
r

=  
b - Ax

c- A y - s
e- X S e

 (18) 

In case that points x, y, s  are feasible, the rests r  
and r  will be null. 

3.3 Practical implementation 

The practical version of the algorithm does not need that 
the initial point satisfies all the constraints. As long as 

the iterations grow, the sequence of points enters the 
feasible region. 

Solving the system, the Newton direction for x 
shown in (19) is obtained. 

d =  D P D X- e- D P D c +  CA (AD A )- r   
 (19) 

where D =  X S-   and P = I- D A (AD A )- AD , that 

is the projection matrix in the kernel of matrix AD . 

The elements in (19) have an interesting geometric 
interpretation: The first one is the centering direction, 
because it is the projection of the push vector (1/x ), 
and it helps keep the algorithm far from the border of the 
primal feasible region. 

The second element is the direction of reduction of 
the objective function, because it is the projection of the 
negative gradient of the objective function of the primal 
problem, and it helps reduce quickly its value. 

The third one is the feasibility direction, because r  
is a measurement of the feasibility of the problem. 

It can be pointed out that the centering direction and 
the reduction direction of the objective function belong 
to the kernel of A. Therefore, the third direction is the 
only one that joins in the feasibility of the primal 
problem. 

At the beginning, one of the most important 
directions is the feasibility one, because the initial point 
chosen does no need to belong to the feasibility region. 
As long as the iterations move along, these elements are 
losing its importance with respect to the other two. 

Once the Newton directions are obtained when 
solving the system, the variables have to be updated in 
order to move to the next iteration. The values are 
obtained in eq. (20). 

x =  x +  d
y =  y +  d
z =  z +  d

        (20) 

In order to obtain the  coefficients that determine 
the step size used on each iteration, equations (21) and 
(22) are applied. 

=  
,- /

 (21) 

=  
,- /

  (22) 

where  <  1 . This criterion is used in order to 
avoid updating the variables to negative values or zero.  

The direction of movement in an iteration (k)  is 
determined by the value of the barrier parameter. In fact, 
this translation should be made several times for a fixed 
value of , so that the Newton steps converge to the 
central path corresponding to that . However, this 
could demand a large number of calculations to the 
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algorithm, therefore, on each iteration the Newton steps 
are calculated just once and the value of the barrier 
parameter is reduced. 

In order to reduce the barrier parameter (23) is used. 

=   (23) 

As stopping criteria for the algorithm, elements in 
(24) are used. 

  
norm(r )  
norm(r )  

  (24) 

where the function norm( ) provides the absolute 
value of the vector. The first criteria in (24) ensures that 
the duality interval is small enough to verify that the 
optimum is close, the other two criteria ensure that the 
problem is feasible. 

4 Mehrotra Predictor-Corrector 
Algorithm 
As an alternative to the primal dual algorithm, the 
Mehrotra predictor-corrector algorithm is explained 
pursuing the same objective as the presented in previous 
section. This algorithm is a refined version of the primal-
dual algorithm. It consists of two stages, the predictor 
stage and the corrector one. 

Applying the step of the Newton directions in the 
former algorithm to the system, the system in (25) is 
obtained. 

Ad = 0
A d +  d = 0

S d +  X d +  d d =  e- X S e 
 (25) 

reduction of the barrier parameter. 
Here, the term d d  has not been neglected. The 

general idea is to make a first estimation of d  and d , 
and then to replace the product d d  in (25) and to 
solve the system. 

In this algorithm it is very important the Cholesky 
decomposition, because it can be used in both stages and 
it speeds up the resoluteness of the system. 

4.1 Predictor stage 

In this stage, the system in (26) is going to be solved. 

A 0 0
0 A I
S 0 X

d
d
d

=  - 
Ax - b

A y +  s - c 
X S e

 (26) 

The solution of the system provides the affined 
movement directions, used to estimate the product d d  

of the system in (25). Additionally, these values provide 
a specific , using the expression in (27). 

= ( )   (27) 

where the values of  and  are obtained using 
(28) and (29). 

=   (  ) (28) 

 =   (29) 

The  parameters are calculated using the same 
criteria as in the primal-dual algorithm. 

4.2 Corrector stage 

Once the values of d  and d  are calculated, the 
system in (30) is solved in order to obtain the corrected 
movement directions. 

0 0
0

0
=

  
 

+    
+  +  

   

 (30) 

where D means a diagonal matrix formed by the 
elements of d . The step sizes are obtained again after 
the final movement directions, and the points are 
updated to move to the next iteration. The stopping 
criteria are the same as in the primal-dual algorithm, i.e., 
those given in (24). 

5 Case Study 

5.1 Algorithms assessment. 

As explained above, two algorithms have been used to 
solve the proposed problem. Primal-Dual and Mehrotra 
Predictor-Corrector algorithms have been tested with the 
aim of comparing results for the same cases. 

Initially, ten cases are considered consisting of 
randomly generating ten different wind power vectors, 
corresponding to a period of 24 hours. Besides, an 
interval of 10 minutes has been taken, resulting in a total 
amount of 144 variables. 

The results of the time performance tests for both 
algorithms can be seen in table 1, where the number of 
iterations and the objective function have been included 
for the ten cases. 

Table 1: Results for time performance tests. 
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Primal-dual Predictor-corrector 

n Secs. Iter. Obj. 

Func. 

Secs. Iter. Obj.  

Func. 

1 2.039 19 -238.214 1.887 11 -238.214 

2 2.089 20 -168.959 2.356 14 -168.959 

3 2.446 24 -550.613 2.52 15 -550.613 

4 2.141 21 -517.382 2.201 13 -517.382 

5 1.981 19 -150.012 3.007 18 -150.012 

6 1.968 19 -194.019 2.51 15 -194.019 

7 2.125 21 -437.988 2.181 13 -437.988 

8 2.146 21 -587.902 2.517 15 -587.901 

9 2.146 21 -266.105 2.16 13 -266.105 

10 1.981 19 -141.292 2.16 13 -141.292 

As can be seen, no differences have been detected in 
terms of the optimal value of the objective function. In 
order to compare the elapsed time and number of 
iterations, a graphical comparison is given in figure 1, 
where the mean values of both algorithms are compared. 

 

Fig 1.  Comparison of elapsed time and number of iterations 
using both algorithms. 

 
In figure 1, it can be seen that the primal-dual 

algorithm performs better in terms of time and the 
predictor–corrector one does the same when referring to 
the number of iterations. Using this result as a reference, 
it can be inferred that the primal-dual algorithm is the 
best choice in order to solve the problem described in 
this paper. However, the predictor–corrector algorithm 
should not be discarded completely due to the low 
number of iterations, i.e., it may be of application when 
the operations involved in an iteration are higher than in 
the case of considering a period of one week. 

5.2 Estimation of the optimal capacity of a wind 
farm with BESS 

In this paragraph a way is shown to determine a range of 
optimal capacities of a BESS system in terms of network 
stability (power generation when needed). Considering 
the results of the previous analysis, the primal-dual 
algorithm is chosen to solve this specific problem. 

In order to obtain the results, a specific case has been 
taken. The related information can be seen in the table 2. 

Table 2. Wind Farm Data. 

Windfarm Chantada 
Number of Wind 

Turbines 
30 

Company 
GALICIA VENTO, 

S.L. 
Unit Power (kW) 1,670 

Town Chantada and Rodeiro 
Wind Turbine 

Manufacturer 

Alstom-

Ecotecnia 

Province Lugo and Pontevedra Model ECO74 

Installed Power 

(MW) 
50 Technology DFIG 

The data of the wind turbines can be found in table 3. 

Table 3. Wind Turbine Data. 

Rated power Cut-in wind speed Rated wind speed 

1,670 kW 3.0 m/s 13.0 m/s 

Cut-out wind speed Survival wind speed Hub Height 

25.0 m/s 59.5 m/s 80m 

The BESS system used in this paper will be the NAS 
battery system. The information of this system is 
provided in table 4. 

Table 4. NAS Battery System Data. 

Rated Output 2,000 kW 

Rated Input 2,000 kW 

Rated Capacity 12 MWh 

Grouping different modules, the desired power and 
capacity can be reached. The power (MW) has been used 
as an index of the capacity of the system, as it is easier to 
identify and operate within the calculations. 

To carry on the research, a representative week per 
season has been considered and different values of 
capacities have been evaluated in order to analyze their 
behavior. 

Ten different experiments per week have been done 
and for the following different power values: 4, 6, 10, 14, 
16, 20, 30, 50 MW 

This results in a total of 320 experiments. After all, 
these average values of the indexes have been obtained. 

With the aim of rating the good behavior of the 
batteries the relationship in (31) has been defined:  

ratio =  ( )      (31) 

This simply shows the relation between the cases 
with and without batteries. So the higher it is, the better 
the behavior of the power plant. 

Vector c will be composed with the different weight 
parameters obtained from demand data. The 
representative weeks that have been taken can be seen 
below: 

 Spring - 13/04/2015 
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 Summer - 3/08/2015 

 Autumn - 12/10/2015 

 Winter - 19/01/2015 

The information needed to model the wind resource 
was taken from the Wind Atlas of the IDAE. Table 5 
shows the Weibull parameters used.  

Table 5. Seasonal Weibull Parameters at 80 m. 

  Spring Summer Autumn Winter 

Weibull C (m/s) 10.18 8.73 11.03 12.27 

Weibull k ( ) 2.36 2.37 2.40 2.42 

All these input data gave the results provided in table 
6. 

Table 6. Average ratios. 

4 MW 6 MW 10 MW 14 MW 

1.030 1.042 1.065 1.105 

16 MW 20 MW 30 MW 50 MW 

1.104 1.135 1.159 1.242 

Here the positive parameter is represented by the 
ratio, while the negative one is the power, as it is 
considered as an expense. If the relation between this 
ratio and the installed power is plotted against the 
installed power, the graph presented in figure 2 is 
obtained.   

The behavior is very similar to a decreasing 
exponential curve. So, as installed power continues 
being added the amount of improvement achieved is 
lowered. 

Finally, an optimal range of power/capacity can be 
set between 20 and 30 MW, representing the 40 and 60% 
of the rated output power. 

 

Fig 2. Ratio over installed power vs. installed power. 

6 Conclusions 
The primal-dual algorithm and the Mehrotra predictor-
corrector algorithm have been successfully implemented 
to optimize the power supplied by a hybrid WF-BESS 

system. For a period of one day and intervals of 10 min, 
the primal-dual algorithm performs better in terms of 
time and, for the same conditions, the predictor-corrector 
performs better in terms of number of iterations. 
Therefore, it can be established that the first method is 
the proper one for the case described here while the 
second one can be of application for a higher number of 
intervals. 

As a collateral result, using the primal-dual algorithm, 
it can be concluded that the rated power of a BESS 
should be around 40-60% of the rated power of the wind 
farm, because a higher rated power would be underused. 
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