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Abstract. We obtain the dependence of the relative temperature of a rheologically complex medium 

depending on the distance to the center of the cylinder. The conditions of spontaneous combustion and the 

stability of the solutions obtained were investigated, and the approximations of the expressions obtained 

were carried out. The results obtained in this work allowed us to determine the areas of occurrence of 

critical flow regimes inside a hollow cylinder under thermal boundary conditions of the 1st and 3rd kind. 

1 Introduction  

In connection with the need to solve various applied 

problems arising during the design and operation of heat 

and power plants, the problem of theoretical study of 

heat and mass transfer processes during the flow of 

chemically reacting liquids in pipes and channels has 

come to the fore. 

The stationary heat conduction equations in a circular 

pipe, in channels of complex shapes under various 

boundary conditions were considered in [1-5]. In [6], the 

construction of a mathematical model of the 

polymerization process in a tubular reactor was analyzed 

in detail. 

The purpose of this work is to obtain the dependence 

of the relative temperature on the distance to the center 

of the cylinder, to identify the conditions of spontaneous 

combustion and to determine the stability of the 

solutions obtained, as well as an approximation of the 

expressions obtained. 

2 Methods  

In this paper, a mathematical model of D.A. Frank-

Kamenetskii is used 

                 
 𝑑2𝜃

𝑑𝜀2 +
1

𝜀
∙

𝑑𝜃

𝑑𝜀
= −𝐹𝑘 ∙ 𝑒𝑥𝑝[𝜃]. (1) 

This equation is a stationary heat conduction [7,8] 

equation of an infinite cylinder with a chemical heat 

source, the reaction rate of which obeys the Arrhenius 

law, the Frank-Kamenetskii method [9] is used for 

approximation. 

Here: 

𝜀 =
𝑟

𝑟1
; 

𝐴𝑟 =
𝑅 ⋅ 𝑇1

𝐸
; 

𝜃[𝜀] =
𝑇[𝜀] − 𝑇1

𝐴𝑟 ∙ 𝑇1

  ; 

𝐹𝑘 =
𝑄0 ∙ 𝐾0

𝜆 ∙ 𝐴𝑟
∙ 𝑒𝑥𝑝 [−

1

𝐴𝑟
] ∙ 𝑟12 

r is the distance from cylinder axis; r1 is the outer 

cylinder radius; Ar is the Arrhenius number; R is the 

universal gas constant; 𝑇1 is the cylinder surface 

temperature; E is the activation energy of a chemical 

reaction; Fk is the Frank-Kamenetskii criterion; T[ε] is 

the absolute temperature; 𝐾0 is the chemical reaction rate 

constant; 𝑄0 is the thermal effect of a chemical reaction; 

λ is the coefficient of thermal conductivity. 

When the cylinder is filled with a condensed phase, 

the walls are heated [10]. If heat transfer occurs by 

means of convection, then according to the model of 

Barzykin V. V. and Merzhanov A. G. the thermal 

boundary conditions of the 3rd kind are [11] 

                               {
𝜃[1] +

𝜃𝜀
′[1]

𝑁𝑢
= 0,

𝜃𝜀
′[0] = 0,              

 (2) 

where Nu is the Nusselt criterion. 

All calculations are performed using the 

MATHEMATICA software product [12]. 
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3 Results 

The general solution (1) has the form: 

                        𝜃[𝜀] =  𝑙𝑛 [
2 𝑐12 𝑐2 𝜀−2+𝑐1

(𝜀𝑐1+𝑐2 𝐹𝑘)2 ]. (3) 

Analysis of the formula (3) shows that: 

1. c1, c2≠0. 

2. For solid cylinder: 

2.1. 0≤ ε≤1; 

2.2.  c1=2, as otherwise θ[0] is undefined; 

2.3.  θ[ε] monotonously decreasing when 0≤ ε≤1; 

consequently, 

                             𝜃[𝜀] =  𝑙𝑛 [
8 𝑐2 

(𝜀2+𝑐2 𝐹𝑘)2], (4) 

                               𝜃𝑚𝑎𝑥 = 𝜃[0] = 𝑙𝑛 [
8

𝑐2 𝐹𝑘2],    (5) 

where c1, c2 are the roots of the system, obtained by 

substituting (3) into thermal boundary conditions.  

As (4) is an even function, it satisfies the last 

equation from (2). After substituting (4) into the first 

equation of (2) and some algebraic transformation the 

system (2) will have the form: 

                    𝑙𝑛 [
8 𝑐2

(1+𝑐2 𝐹𝑘)2] −
4

𝑁𝑢 (1+𝑐2 𝐹𝑘)
= 0. (6) 

It seems to be impossible to solve this equation 

analytically. We denote: 

               𝑞2[𝑐2] = 𝑙𝑛 [
8 𝑐2

(1+𝑐2 𝐹𝑘)2] −
4

𝑁𝑢 (1+𝑐2 𝐹𝑘)
 (7) 

Analysis of (7) showed that: 

1. c2>0; 

2. q2[c2] has a vertical asymptote when c2=0; 

3. q2 [c2] has an extremum (max); 

c2max is the root of the equation q2'=0: 

                               𝑐2𝑚𝑎𝑥 =
2+√𝑁𝑢2+4

𝑁𝑢  𝐹𝑘
; (8) 

𝑞2𝑚𝑎𝑥 = 𝑙𝑛 [𝑁𝑢
√𝑁𝑢2 + 4 − 𝑁𝑢

𝐹𝑘
] − 

                          −
4

2+𝑁𝑢+√4+𝑁𝑢2
;   (9) 

 

4. q2[c2] monotonously increases when 0<c2<c2max  

5. q2 [c2] monotonously decreasing when c2>c2max , 

6. 𝑞2[𝑐2] has no roots if 

                                       𝑞2𝑚𝑎𝑥 < 0.      (10) 

7. q2[c2] has the unique root if (spontaneous 

combustion condition): 

                                          𝑞2𝑚𝑎𝑥 = 0. (11) 

8. q2[c2] has two roots if 

                                        𝑞2𝑚𝑎𝑥 > 0.   (12) 

The graphs of q2[c2] with different Fk   and constant 

Nu=3.659 are shown in figure 1. 

 

Fig. 1. Graphical interpretation of equation (9) for 

various Fk and constant Nu = 3.659. 

The spontaneous combustion conditions can be 

transformed by substitution of (9) and (11) and the 

subsequent solution of the obtained equation 

𝐹𝑘 = 𝐹𝑘𝑐𝑟 = 𝑒𝑥𝑝 [
√𝑁𝑢2 + 4 − 2 − 𝑁𝑢

𝑁𝑢
] ∗ 

∗ 𝑁𝑢 (√𝑁𝑢2 + 4 − 𝑁𝑢).    (13) 

Analysis of (13) shows that: 

1. 𝐹𝑘𝑐𝑟  - monotonously increases; 

2. 𝐹𝑘𝑐𝑟  – has the horizontal asymptote  

                        𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝐹𝑘𝑐𝑟] = 2.    (14) 

The resulting equation coincides with the condition 

of spontaneous ignition of an infinite cylinder under 

thermal boundary conditions of the first kind [9]. 

To simplify the calculations, we approximate (13): 

1. By fractional rational function Pade1/1  [13]; 

                          
𝑃𝑎𝑑𝑒1

1[𝐹𝑘𝑐𝑟]
= 2 −

8

2 𝑁u+3
;  (15) 

2. By fractional rational function Pade2/2; 

                      
𝑃𝑎𝑑𝑒2

2[𝐹𝑘𝑐𝑟]
= 2 − 6

2 𝑁𝑢+1

3 𝑁𝑢2+6 𝑁𝑢+4
. (16) 

The graphs of (13) - (16) are shown in figure 2 

 

Fig. 2. Graphical Interpretation of Equations (13-16). 

For numerical comparison of the approximating 

curves, we use the absolute value of the relative error 
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           𝛿[𝑃𝑎𝑑𝑒1/1[𝐹𝑘𝑐𝑟]] = |
𝐹𝑘𝑐𝑟−𝑃𝑎𝑑𝑒1/1[𝐹𝑘𝑐𝑟]]

𝐹𝑘𝑐𝑟
|, (17) 

                 𝛿 [
𝑃𝑎𝑑𝑒2

2[𝐹𝑘𝑐𝑟]
] = |

𝐹𝑘𝑐𝑟−𝑃𝑎𝑑𝑒2/2[𝐹𝑘𝑐𝑟]]

𝐹𝑘𝑐𝑟
|, (18) 

    𝛿[𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝐹𝑘𝑐𝑟]] = |
𝐹𝑘𝑐𝑟−𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝐹𝑘𝑐𝑟]

𝐹𝑘𝑐𝑟
|. (19) 

The graphs of (17) - (19) are show in figure 3.  

 

Fig. 3. Graphical Interpretation of Equations (17-19). 

By substituting (13) into (8) we can calculate the 

unique root of (6) with respect to (13):  

𝑐2𝑐𝑟 =
(2+√𝑁𝑢2+4)(𝑁𝑢+√𝑁𝑢2+4)

4 𝑁𝑢2 𝑒𝑥𝑝 [
2+𝑁𝑢−√𝑁𝑢2+4

𝑁𝑢
] (20) 

c2cr  has the horizontal asymptote 

                         𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝑐2𝑐𝑟] =
1

2
.     (21) 

𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝑐2𝑐𝑟] coincides with 𝑐2𝑐𝑟  when thermal 

boundary conditions of the first kind are held. 

With respect to (9) the inequation (10) can be 

transformed: 

                                  𝐹𝑘 > 𝐹𝑘𝑐𝑟 .           (22) 

With respect to (9) the inequation (12) can be 

transformed:  

                                𝐹𝑘 < 𝐹𝑘𝑐𝑟 .     (23) 

The equation (6) cannot be solved analytically under 

the conditions (22) and (23). To solve it we will use: 

1) the localization of the roots by the analytical 

method 

          𝑞2[𝑐2] < 0 𝑖𝑓  𝑙𝑛 [
8 𝑐2

(1+𝑐2 𝐹𝑘)2] = 0,       (24) 

which gives us 

                                𝑞2[𝑐23] < 0 (25a) 

                               𝑞2[𝑐24] < 0,  (25b) 

where 

𝑐23 =
𝐹𝑘 − 4 + 2√2√2 − 𝐹𝑘

𝐹𝑘2

−  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑟𝑜𝑜𝑡 𝑜𝑓 (24), 

𝑐24 =
4 − 𝐹𝑘 + 2√2√2 − 𝐹𝑘

𝐹𝑘2

− 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑟𝑜𝑜𝑡 𝑜𝑓 (24).   
Consequently, 

                       𝑐23 < 𝑐21 < 𝑐2𝑚𝑎𝑥 ,  (26a) 

                         𝑐2𝑚𝑎𝑥 < 𝑐22 < 𝑐24,       (26b) 

where c21 - 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑟𝑜𝑜𝑡 𝑜𝑓 (6), c22 - 

𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑟𝑜𝑜𝑡 𝑜𝑓 (6). 

2) The refining of localized roots. 

To calculate the c21, c22 with fixed Fk, Nu we can 

use any of numerical methods of solving the non-linear 

equations [13].  

By substituting the roots of (6) into (4) we get the partial 

solutions of (1) with respect to (2). 

• If (22) is valid, then (1) has no partial solutions. 

When this condition is held, according to the 

stationary theory [9] the stationary distribution of 

temperature is impossible. 

• If (13) is held, then (1) has the unique partial 

solution. 

This solution is the critical one  

𝜃𝑐𝑟[𝜀] =
2+𝑁𝑢−√4+𝑁𝑢2

𝑁𝑢
+

 𝑙𝑛 [
2(2+√4+𝑁𝑢2)(𝑁𝑢+√4+𝑁𝑢2)

(2+√4+𝑁𝑢2+𝑁𝑢 𝜀2)
2 ]       (27) 

The function 𝜃𝑐𝑟[𝜀] has the asymptote  

             𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝜃𝑐𝑟] = 2  𝑙𝑛 [ 
2

1+𝜀2].     (28) 

By substituting (27) into (5) and performing the 

transformations, we get: 

𝜃𝑐𝑟 𝑚𝑎𝑥 =
2+𝑁𝑢−√4+𝑁𝑢2

𝑁𝑢
+  𝑙𝑛 [

2(𝑁𝑢+√4+𝑁𝑢2)

2+√4+𝑁𝑢2
].    (29) 

The function 𝜃𝑐𝑟 𝑚𝑎𝑥 has the horizontal asymptote  

                𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝜃𝑐𝑟 𝑚𝑎𝑥] = 𝑙𝑛[4] (30) 

Taking into account the cumbersomeness of (29) we 

will approximate it with a fractionally rational Pade 

function to make it simpler [14-16].  

Pade2/2[θcr max]=ln[4] −
18

18 𝑁𝑢2+24 𝑁𝑢+41
.  (31) 

The graphs of (29) - (31) are shown in figure 4. 

To compare the approximating curves, we use the 

absolute value of the relative error: 

𝛿[𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝜃𝑐𝑟 𝑚𝑎𝑥]] =  

                          |
𝜃𝑐𝑟 𝑚𝑎𝑥−𝑎𝑠𝑖𝑚𝑝𝑡𝑜𝑡𝑎[𝜃𝑐𝑟 𝑚𝑎𝑥]

𝜃𝑐𝑟 𝑚𝑎𝑥
|,    (32) 
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  𝛿[Pade2/2[𝜃𝑐𝑟 𝑚𝑎𝑥]] = |
𝜃𝑐𝑟 𝑚𝑎𝑥−Pade2/2[𝜃𝑐𝑟 𝑚𝑎𝑥]

𝜃𝑐𝑟 𝑚𝑎𝑥
|. (33) 

The graphs of (32) - (33) are shown in figure 5.  

 

Fig. 4. Graphical Interpretation of Equations (29-31). 

 

Fig. 5. Graphical Interpretation of Equations (32-33). 

If (23) is valid, then (1) has two different partial 

solutions. 

                            𝜃1[𝜀] = ln [
8∙c21

(𝜀2+c21∙𝐹𝑘)2], (34a) 

                        𝜃2[𝜀] = 𝑙𝑛 [
8∙𝑐22

(𝜀2+𝑐22∙𝐹𝑘)2],    (34b) 

consequently, 

                         𝜃1 𝑚𝑎𝑥 = 𝑙𝑛 [
8

𝑐21∙𝐹𝑘2],       (35a) 

                        𝜃2 𝑚𝑎𝑥 = 𝑙𝑛 [
8

𝑐22∙𝐹𝑘2] (35b) 

We should note that: 

3.1.  𝜃1[𝜀] > 𝜃𝑐𝑟[𝜀] > 𝜃2[𝜀],  
3.2.  𝜃1[εmax] > θ𝑐𝑟𝑚𝑎𝑥

> 𝜃2[εmax]. 

The graphs of (27), (35a), (35b) are shown in figure 

6.  

 

Fig. 6. Graphical Interpretation of Equations (27), (35a), (35b). 

3.3  𝜃1[𝜀] is unstable as 𝜃1[εmax] when δ=0 has a 

vertical asymptote and is decreasing monotonously (see 

figure 7), which is physically impossible.  

 

Fig. 7. The dependence of the relative temperature on the value 

of the Frank-Kamenetskii parameter. 

4 Discussion 

Our research shows that: 

1. If Fk < Fkcr  (1) has two partial solutions with 

respect to the thermal boundary conditions (2). The 

greater of partial solutions is unstable. 

2. If Fk = Fkcr  (1) has the unique partial solution 

with respect to the thermal boundary condition (2). This 

solution is critical. 

3. If Fk > Fkcr, then according to the stationary theory 

[9] the stationary distribution of temperature is 

impossible. 

4. Depending on the required accuracy and the value 

of Nu, the spontaneous combustion condition can be 

calculated exactly, or replaced by the spontaneous 

combustion condition under boundary conditions of the 

first kind or by the approximating fractional rational 

Padé function. 

5. Θcr max depending on the required accuracy and the 

value of Nu, it can be calculated exactly, either replaced 

by lg4 or calculated by the approximating rational 

fractional Pade function. 

The use of the approximating fractional rational Pade 

function significantly reduces the amount of 

calculations. 
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