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Abstract. The paper describes the method for finding a compromise solution during formation of operation 

modes of hydropower systems (cascade of hydropower plants). The software solution “Energy system of the 

HPP cascade” (http://hydrocascade.com) was implemented based on the developed methodology. In the 

existing model, in order to improve the accuracy of forecasting the parameters of the generating equipment 

of hydroelectric power plants and hydraulic structures, machine learning methods were used. The new 

forecast model has increased the accuracy of the forecasts by an average of 3.67%.

1 Introduction 

The Russian electric power industry is one of the largest 

and most reliable energy systems in the world. The basis 

of the production potential of the Russian electric power 

industry includes more than 700 power plants with a 

total installed capacity of more than 230 GW and power 

lines of all voltage classes with a length of more than 2.5 

million km. 

The Unified Energy System (UES) of Russia is 

characterized by the presence of various types of power 

plants, such as Thermal Power Plants (TPP) (66% of the 

installed capacity of the UES), Nuclear Power Plants 

(NPP) (17%), Hydro Power Plants (HPP) (16%) and 

Renewable-energy Power Plants (less than 1%). The 

diversification of the energy system across three key 

sources of electricity generation significantly increases 

the efficiency and reliability of the UES of Russia 

compared to that of other countries. Solar and wind 

generation has a high growth rate, but it doesn’t 

influence the country's UES. 

Combined heat and power plants (CHP) operate in a 

cogeneration mode, and generate both electrical energy 

and heat. At these power plants electricity generation is 

largely dependent on the heat consumption of industrial 

and residential facilities located near the generating 

facility. Nuclear power plants operate in the basic 

operation mode, which is characterized by almost 

constant load during the whole day. Under these 

conditions, the non-uniformity of electric energy 

consumption is compensated by hydroelectric power 

plants, which in a short period of time (5-8 minutes) 

have the possibility of including the full composition of 

the generating equipment to the load of the installed 

capacities of hydroelectric power plants. 

The role of hydropower plants in the Russian UES is 

extremely important. The following characteristics make 

the hydropower plants the indispensable energy sources: 

high reliability of the generating equipment, lack of 

transport operations for fuel transportation, high 

maneuverability and operation speed for starting and 

stopping the generating equipment, the implementation 

of automatic secondary frequency control. 

It is worth noting that in Russia the hydropower 

plants are mostly functioning according to a cascade 

scheme (Volga-Kama cascade, Angara-Yenisei cascade 

and others). Hydropower systems connected by a single 

water regime and located at the same watercourse are 

called a cascade of hydroelectric power plants. 

Construction of large cascades of hydroelectric power 

stations with huge reservoirs provides the most rational 

use of water resources at large rivers. The key feature of 

cascade hydropower system functioning is 

interconnection between the steps (system elements). 

First of all this means energy, hydrological and hydraulic 

connections. 

The hydropower system functioning in the form of 

large cascades of hydroelectric power stations is of 

interest not only from the energetic point of view. It has 

a multi-purpose use in agricultural and fishery industries, 

industrial and municipal water supply, river navigation 

and others. A detailed description of the interests of each 

water user in the hydroelectric power station cascade can 

be found in [1]. 

As these interests come from different government 

and commercial structures, it becomes obvious that the 

requirements of water users in terms of establishing 

favorable operating conditions of the hydropower system 

of the HPP cascade are to a greater extent contradictory. 

Currently, there is no effective model for the 

operation of the hydropower system of the hydroelectric 

power station cascade, which makes it possible to 

equally take into account the interests of all water users. 

The existing methods for optimizing the operating 
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modes of hydropower systems either have lost their 

relevance or satisfy the interests of a specific circle of 

water users. The optimization model should take into 

account the interests of all users of water resources. 

Thus, the optimization problem has an uncertain number 

of criteria for optimality. 

Attempts to solve similar problems were made in 

works [2-12]. However, for some of them it is hard to 

find a practical implementation, the others are used for 

individual hydropower plants or small cascades of 

hydropower plants. 

2 Methods of finding a compromise 
solution 

It is worth noting that the authors of the article attempted 

to solve the problem stated above. In particular, in article 

[13], the author proposed a method of successive 

concessions and an algorithm for calculating the 

operation modes of a cascade of hydroelectric stations. 

In the framework of the developed methodology, the 

problem of optimal distribution of runoff between 

hydroelectric power plants is reduced to a compromise 

satisfaction of requirements for expenditures through 

hydroelectric power plants or water levels in reservoirs 

for all water users of the cascade. Thus, the task of 

optimally distributing the runoff between the waterworks 

of the cascade in a deterministic formulation is reduced 

to determining the operation mode of the hydroelectric 

power station cascade, in which the maximum possible 

number of requirements are implemented ranked by 

importance. In addition, the specified mode restrictions 

are satisfied. 

The developed methodology allows one to ensure the 

interests of energy system and at the same time satisfy 

the requirements of other water users and ecology. 

The technique was tested using hydroelectric power 

plants of the Volga-Kama cascade. This cascade is one 

of the largest HPP cascades in the world, located at the 

territories of 18 regions in Russia (Figure 1).  

Electricity generation by hydroelectric power stations 

of the cascade exceeds 37 billion kWh per year. The 

cascade consists of 8 large hydropower plants on the 

Volga river: Ivankovskaya HPP, Uglichskaya HPP, 

Rybinskaya HPP, Nizhegorodskaya HPP, 

Cheboksarskaya HPP, Zhigulevskaya HPP, Saratovskaya 

HPP and Volgogradskaya HPP; 3 hydropower plants on 

the Kama river: Kamskaya HPP, Votkinskaya HPP and 

Nizhnekamskaya HPP; 2 hydropower plants on the 

Belaya river: Pavlovskaya HPP and Yumaguzinskaya 

HPP. The total installed capacity of the HPP cascade 

exceeds 11 GW (Table 1). 

Table 1. Hydropower stations of the Volga-Kama cascade. 

HPP 
Capacity 

(MW) 

Reservoir 

volume (km3) 

Ivankovskaya  28.8 1.22 

Uglichskaya  120 1.245 

Rybinskaya  356.4 25.4 

Nizhegorodskaya  520 8.82 

Cheboksarskaya  1370 4.6 

Zhigulevskaya  2467 57.3 

Saratovskaya  1403 12.87 

Volgogradskaya  2671 31.45 

Kamskaya  552 12.2 

Votkinskaya  1020 9.36 

Nizhnekamskaya  1205 4.21 

Pavlovskaya  166.4 1.411 

Yumaguzinskaya  45 0.89 

Total 11.924 170.976 

 

It should be noted that on the basis of the developed 

methodology, we developed the software package 

“Energy system of the HPP cascade”. The software 

package is implemented in ASP.NET C# language using 

MVC technology. As a database, MSSQL Server is used, 

IIS (Internet Information Server) is used as a web server. 

Access to the software package is provided from any 

web browser at http://hydrocascade.com. The graphical 

 

Fig. 1. Location of the Volga-Kama cascade of hydropower plants on the Volga, Kama and Belaya rivers in the central European 

part of Russia. 
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interface of the Zhigulevskaya HPP web page in the 

“Energy system of the HPP cascade” software complex 

is presented in Figure 2.  

 

Fig. 2. Graphical interface of the individual page of the 

Zhigulevskaya HPP in the software product “Energy system of 

the HPP cascade”. 

The developed program software is used for 

calculation of medium-term operation modes of the 

hydropower system of the Volga-Kama cascade. It is 

actively used by representatives of the owners of 

hydroelectric power stations, ministries and committees 

of ecology and natural resources of the regions bordering 

the reservoirs of the Volga-Kama cascade. The 

calculation results are used at meetings of the 

Interdepartmental Working Group on Regulation of the 

Operation Regimes of Volga-Kama cascade hydropower 

plants at the Federal Agency for Water Resources. 

The software product is used by JSC "Tatenergo" to 

calculate the operating modes of Nizhnekamskaya HPP. 

Software solution has shown its economic efficiency. 

The actual economic effect from the use of research 

results for JSC "Tatenergo" (owner of the 

Nizhnekamskaya HPP) annually amounts to more than 

100 million rubles (~ 1.503 million dollars) for one 

hydroelectric station. 

3 Reducing the accuracy of forecast 
parameters in the developed model 

After launching the “Energy system of the HPP cascade” 

program software, the authors continued research on 

improving the accuracy of forecasting the basic 

parameters of the generating equipment and hydraulic 

structures. 

First of all, these studies were aimed at improving the 

accuracy of forecasting the downstream level of the 

hydropower plants. In 2012 we proposed a method for 

predicting the downstream level of a hydropower plant 

under conditions of daily flow regulation [14]. In the 

framework of this methodology, a dynamic characteristic 

of Nizhnekamskaya HPP downstream level was 

obtained, which has the peculiarity of daily updating to 

improve the accuracy of the forecast. 

It should be noted that this technique has proven 

itself when considering formation of short-term 

operation modes of individual hydropower plants. 

However, scaling the methodology to a cascade, which 

consists of 13 hydroelectric power plants, revealed a 

decrease in the prediction accuracy of the parameters, 

which in turn adversely affected the accuracy of the 

optimization model of the cascade hydropower system. 

4 Application of machine learning 
methods 

To improve the accuracy of the forecast, it was decided 

to apply one of the directions of artificial intelligence, 

i.e. machine learning. Machine learning is a set of 

artificial intelligence methods, the characteristic feature 

of which is not a direct solution of the problem, but 

learning in the process of applying solutions to a set of 

similar tasks (search for dependencies in a large amount 

of data). The key to successful application of machine 

learning methods in practical problems is the presence of 

a large amount of qualitative data on the object of 

forecasting. 

At each large hydroelectric station archiving of 

telemetric indicators of the station takes place in real 

time. In particular, at the Nizhnekamskaya HPP, data for 

more than 10 years is stored in a database obtained in a 

3-minute period. At the same time, the estimated number 

of parameters is more than 50. These include the 

performance indicators of generating equipment, 

hydrological and energy indicators, ambient temperature, 

wind strength and direction, and others. Thus, the total 

amount of data for each parameter is more than 1.75 

million values. 

For each of the 13 hydroelectric power plants there 

are 50 parameters, so their total number is 650. In 

addition, the model includes data on gauging stations 

that are located between hydropower plants. As a result, 

the total amount of training data exceeds 1 billion values. 

This amount of data is more than enough to train the 

“supervised learning” model. 

4.1 Supervised learning 

Supervised learning is learning when there are 3 types of 

data, namely: 

• Training set Xtrain; 

• Testing set Xtest; 

• Predictable data Xpredict. 

Xtrain is used to build/"fit" the model (choice of 

variables, determination of coefficients, etc.) in order to 

minimize the error between the predicted hydropower 

plant downstream level, and the actual level. Xtest is a set 

for which we know the answers and at the same time we 

want to test our model. The prediction is formed using 

our model and compared with real answers. Using this 
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comparison, we can understand how well our model 

works. Xpredict is the new data used in business (to predict 

the level in the downstream reach). 

Thus, let X be the set of objects, and Y the set of 

valid answers. y* is the objective function. 𝑦∗: 𝑋 →
𝑌, 𝑦𝑖 =  𝑦∗(𝑥𝑖) are known only for a finite subset of the 

objects 𝑥1 … 𝑥𝑚 from X. In this case, the pairs (xi,yi) are 

called precedents. The set of such pairs with i from 1 to 

m is Xtrain. 

As a method of forecasting, a generalized linear 

multiple regression model was applied: 

( )1 1 2 2  * * * ,n nY g a b X b X b X error= + + ++ +  

where error is the error component that cannot be 

calculated using predictors, and g() is a function. The 

inverse function to g is called a coupling function. 

4.2 The implementation of the predictive model 
in the programming language R 

The forecast model was implemented in the R 
programming language using several specialized 

packages. 

The mean absolute percentage error (MAPE) was 

chosen as the metric. There are other metrics, such as 

root mean squared error ([R]MSE). However, MAPE has 

a more intuitive interpretation and therefore this metric 

was chosen as the base. 

The general structure of the R language code 

includes the following stages: 

• At the first stage specialized packages and libraries 

are loaded via packet manager pacman. Pacman checks 

for library availability in the R studio development 

environment. If there are no libraries, automatic loading 

is performed. The list of loadable libraries includes: 

caret, ROCR, lift, glmnet, MASS, etc. 

• At the second stage the source data is imported into 

the model. In addition, data structures are checked for 

categorical variables (factors) and whole and real 

numbers. 

• At the third stage data is cleared, namely, formats, 

missing values, etc. For this, an additional custom 

function CleanData is used. It is worth noting that data 

omission is often not random. For categorical variables, 

in the absence of data, a new category is added. For 

continuous variables, a separate model for predicting 

missing data is created based on the available ones. At 

the same time, for each missing parameter, “surrogate” 

variables are added. In addition, at this stage, a 

combination of rare categories is carried out using the 

additional “Tbl” function. 

• At the fourth stage the dataset is divided into test 

and training sets. 

• At the fifth stage the model is “trained” on training 

data. Variables are selected using StepAIC (incremental 

regression). Stepwise regression is performed using the 

exact Akaike Information Criterion (AIC) as a criterion 

for including or deleting variables.  

( )AIC 2k 2ln L ,= −  

where k is the number of parameters in the statistical 

model, L is the maximized value of the likelihood 

function of the model. The best model is recognized for 

which the value of AIC is minimal. 

In stepwise selection, variables are added or deleted 

from a model one at a time, until some stopping criterion 

is reached. For example, in forward stepwise regression 

one adds predictor variables to the model one at a time, 

stopping when the addition of variables would no longer 

improve the model. In backward stepwise regression, 

one starts with a model that includes all predictor 

variables, and then deletes them one at a time until 

variables being removed would degrade the model 

quality. The stepwise regression combines the forward 

and backward stepwise approaches. Variables are 

entered one at a time, but at each step, the variables in 

the model are reevaluated, and those that don’t 

contribute to the model are deleted. A predictor variable 

may be added and deleted from a model several times 

before a final solution is reached [15]. 

The implementation of stepwise regression methods 

vary by the criteria used to enter or remove variables. 

The stepAIC() function in the MASS package performs 

stepwise model selection (forward, backward, stepwise) 

using an exact AIC criterion [15]. 

• At the sixth stage we obtain a prediction model for 

test data. 

• At the seventh stage we obtain a metric for test 

data. 

Figure 3 shows models of regression diagnosis 

graphs. The graphs show that systematic errors in the 

model have not been identified.  

 

Fig. 3. Regression diagnosis graphs. 

Figure 4 shows a graph comparing the actual 

downstream level of Nizhnekamskaya HPP for June 24, 

2019 with old and new forecast data. It should be noted 

that in the range of 52.61 - 54.01 (1.4 m), the error of the 

new forecast was reduced by 3.67%. 

Thus, the combination of computational power 

methods and the availability of data open up tremendous 

opportunities for decision-making during formation of 

operation modes of hydropower systems. The use of 

machine learning methods can significantly increase the 

accuracy of basic parameters prediction for hydropower 

systems cascade.  
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Fig. 4. Graph of level downstream for Nizhnekamskaya HPP. 

The developed software solution using the successive 

concessions method allows one to ensure the interests of 

a single energy system and at the same time satisfy the 

requirements of other water users and ecology. 

At the next stage, it is planned to scale the forecast 

method to other parameters of the model and to update a 

new release of the considered software solution 

(http://hydrocascade.com). 

The next article will be devoted to the use of the 

random forest method of machine learning algorithm in 

the model of operation mode calculation of cascade 

hydropower systems. 

5 Conclusion 

A technique has been developed to search for 

compromise solutions during formation of the operation 

modes of hydropower systems. Based on the developed 

methodology, the software solution “Energy system of 

the HPP cascade” (http://hydrocascade.com) was 

implemented. In the existing model, machine learning 

methods were used to improve the accuracy of predicting 

the operating parameters of hydropower equipment and 

hydraulic structures. 
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