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Abstract. Methods of calculating hydraulic structures with the aim 

of identifying the reserves of their bearing capacity, extending their 

service life and strengthening structures at minimal cost are 

considered in the article. The above problems’ solutions are based 

on the stress-strain state’s study of port hydraulic structures in 

order to ensure the failure-free operation of facilities with the 

maximum reduction in time and money for their technical operation 

1 Introduction 

Operation analysis dock embankments showed that the standard service life of the docks 

did not correspond to the real ones, since the design of structures had not fully taken into 

account the intensity of physical and moral deterioration of the structures. In this regard, it 

became necessary to assess the reliability of the structure, during the dock embankments’ 

examining. Docks with low level of operational reliability value must be reconstructed [1].   

 In order to assess the reliability of structures using the probability theory methods, it is 

assumed that the structure can either be in a failure state (V) or in a failure-free state (V ), 

the corresponding probabilities can be calculated for each state. Since the V  event is the 

opposite of V event, then 

                          Pf + Ps=1.                   

 As a rule, the probability of failure is taken as a measure of reliability rather than 

failure-free operation in construction. There are two approaches to determine the 

probability of failure [2,3].   

The probability of failure can be estimated, based on a statistical analysis of damage. 

However, this method implementation in determining the reliability of dock facilities is 

problematic, since dock walls are structures with great reliability and their failure is a rare 

event with a very low probability. 

 Consequently, a statistical estimation of the failure probability would require such a 

large sample size, which is almost impossible to achieve, since there are only a small 

number of completely similar dock embankments. In addition, even if it is possible to draw 
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any reliable conclusions based on damage statistics, these conclusions will appear, having 

historical interest only. Thus, it is hardly possible to estimate the probability of failure from 

statistics. 

 Nevertheless, it is possible to determine characteristics of a mass nature and evaluated 

statistically on the basis of random values for individual structures, such as dock 

embankments. These characteristics include properties of building materials, produced and 

tested as mass products, repeated external loads, geometric dimensions, physical and 

mechanical characteristics of soils, joints elements. All these parameters in the theory of 

structural reliability can be considered as basic variables determined by statistical studies. 

Mathematically, they are represented as random variables and are denoted by Х1, Х2, …, 

Хm, one can theoretically determine the probability of failure conditions occurrence, based 

on the introduced variables [4].   

 It must be borne in mind that such defined reliability of dock facilities, naturally, does 

not take into account the possible negative contribution due to erroneous human actions. 

 So, it is possible to reliably estimate the middle part of distribution density curve, and 

accordingly the mean and standard deviations with the help of statistical studies of such 

durable structures operation as dock walls, but it is almost impossible to justify the behavior 

in the low distribution densities zones. 

Therefore, in the future, we will use the concept of “operational failure probability” to 

justify the dock embankments reliability, which can only be considered as a comparative 

value for a qualitative assessment of the structures’ strength and reliability [5,6].   

 

2 Materials and methods  

Real building structures are made of materials which properties depend on time and impact 

of various environmental factors. All materials are subjected to aging processes, fatigue, 

hardening, corrosion, creep and other phenomena that change bearing capacity, most often 

in the reduction direction. These phenomena significantly affect the probability of failure. 

 Therefore, it is clear that the probability of failure increases monotonically over the 

time. If we assume that the structure at the initial moment of its existence (t = 0) is in a state 

of trouble-free operation, then there are two boundary values: 

                                              0)0( fP   and 1)(lim 


tPf
t

.                  

 The reliability characteristic of a structure over the time is the failure density ht(t),, 

which allows  determining the probability of failure in the time interval (t, t+Δt) for a 

structure that has already reached the age t. The value of ht(t)Δt is calculated as the 

probability that the structure works without fail until time t and can fail, at least, in the 

following time interval (t, t+Δt): 

                                    )|( tTttTPth LLt  .   

where TL is the lifetime of the structure. 

The failure density, presented graphically, almost always has the form, which is shown 

in Figure 1. At the beginning of the existence period (phase 1), there are failure cases of any 

elements due to the poor quality of work and materials quite often. This is followed by 

phase 2 with a relatively constant density of failures, which are usually caused by 

overloads. Due to the processes of fatigue, aging, or corrosion, the failure density increases 

again at the end of the building's service life (phase 3). 

 It must be borne in mind that failure can not follow only due to a single crossing of the 

critical level, assessing the possibility of a structure failure as a whole. The occurring 
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phenomenon of material fatigue can lead to sudden fatigue failure at a relatively low load 

level within frequently repeated loads. 

 

 
Fig. 1. Failure Density Graph 

 

Thus, one of the main tasks of the reliability theory is to evaluate reliability and 

durability indicators of a system as a whole according to the known laws of reliability and 

durability distribution of its elements. The method of calculating reliability and durability 

indicators substantially depends on how the structural elements interact with each other in 

terms of ensuring system reliability. 

 In order to assess the reliability of the dock embankments, it is necessary to use the 

dependence to determine the probability of a structure failure as a whole. One must first 

find the reliability indicators of each element. 

The failure-free operation probability of dock embankments is determined by the 

calculation formula that is valid for the series connection of system elements where, at least 

one failure leads to the entire system failure as a whole: 

                                   



m

k

sks PP
1

.  

Here m –is the number of elements with a probability of failure-free operation Ps1, Ps2, 

…, Psm.. In this case, the behavior of structural elements is considered as a random process, 

and the limiting state is in the form of a random ejection from the region of admissible 

states.  

Thus, in order to assess the element’s reliability, the question of whether the random 

process reaches a certain acceptable level or exceeds it plays an important role. 

In the case when the random variables have a normal distribution, and the equation of 

limit state is linear with respect to Xi, the reliability of the structure can be estimated by the 

approximate method. With a normal distribution of random variables, the distribution 

density is expressed as: 
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If the equation of limit state is linear, then it can be written as     





m

i

ii xccxg
1

0)( , 

where сi are constants, determined by the structure of the static system. 

Further calculations are greatly simplified after the variables replacement 

3

E3S Web of Conferences 138, 01005 (2019) 
CATPID-2019

https://doi.org/10.1051/e3sconf/201913801005



xi

xi
ii

m
xy


 . 

The new variable has zero mean and unit standard deviation. Then the distribution 

density of the new quantity is 


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The limit state function in y – space can be written as 

 
 


m

i

m

i

ixiixii ycmccyh
1 1

0 .0)(   

The equation of limiting state in y-space is also linear; it is transformed into the Hessian 

form 





m
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i yyh
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,0)(   

 where αi is the sensitivity coefficient 
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β is safety index 
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Dependence probability 
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 It is assumed that the functions and distribution densities of all random variables xi are 

completely known in the above reasoning. However, a large volume of samples is required, 

especially for “peripheral” distribution zones to establish the type of distribution with 

sufficient reliability. As it was mentioned, the corresponding experimental points, as a rule, 

are not enough, studying dock embankments. At the same time, the type of distribution, 

determined primarily by peripheral zones, has a decisive influence on the failure 

probability. The method of moments allows avoiding these difficulties, whereby it is not the 

probability of failure that is determined, but the safety index, which does not depend on a 

distribution type [7].  

The safety index is calculated based on the mathematical expectation mxi  and standard 

deviation σxi, which are based on the available statistical information about the structure. 

The moments’ method determines the safety factors 

 mxxxgz ,...,, 21  

according to the first two moments of given random variables xi. 

If the safety factor is a linear function of the basis variables 

,
1
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then the moments of the random variables’ functions according to probability theory can 

be determined by the given mathematical expectation E [xi] = mxi, variance Var [ xi ] = σxi
2 

and covariance Сov[xi,xj]=σxi σxj ρxixj: 
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The safety index is defined as the mathematical expectation ratio of safety margin to its 

standard deviation 
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If the equation of limit state is nonlinear, it can be linearized using the Taylor 

expansion: 
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So, the above expressions for the mathematical expectation and standard deviation can 

be in the form: 
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We have to note that all derivatives, included in the formula, are calculated at the point 

of mathematical expectation. 

We introduce the derivatives’ vector of the limit state equation at the point of 

mathematical expectation 
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Then the safety index, also called the Cornell index, will have the form of 
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The above-described approach to determining the structure reliability by the Cornell 

safety index is quite simple and at the same time gives acceptable results in accuracy. In 

this regard, it can be recommended for a rapid assessment of the dock embankments’ state. 

If it is necessary to conduct more accurate calculations, it is advisable to use the method of 

semi-invariants, successfully tested by V. D. Kostyukov. 

The half of the total length of the dock front is quays, which are made of metal sheet 

pile. The most likely types of failure for quays are destruction of the front wall and rupture 

of anchor rods, so, we will illustrate the author's recommended method for assessing the 

reliability of dock embankments in these two cases [8]. 

The strength of the quays’ front wall is determined from the condition 

,0 MW T  
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where  W – resistance moment of the front wall; 

σТ – front wall yield strength; 

М – moment in the front wall. 

We consider random uncorrelated quantities W and σТ. The momentum in the front wall 

is neglected. The distribution parameters of random variables can be taken under 

consideration, based on the authors’ studies on the dock embankments of various Siberian 

rivers (Table 1). 

Table 1. Distribution parameters for a front wall 

Random value ][ ixi xEm   2/1
])[( ixi xVar  

x1 = W 2,90 10-3 m3 3,00 10-4 m3 

x2 = σТ 2,81 108 Pa 2,70 107 Pa 

 

The equation of the limiting state of the front wall has the form: 

0)( 21  MxxMWxg T . 

The equation is nonlinear due to the fact that not only the resistance moment in the wall 

is random, but also the yield strength of the material. We linearize it, using the Taylor 

method: 

.)( Mmmmg TW    

We take a bending moment in the front wall M = 500 kN/m then 
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 As a result of the calculations, we obtain the safety index 
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In order to determine the reliability of the quays’ front wall, corresponding to the found 

safety index, table 2 is compiled. 

Table 2. Relationship between safety index and probability of uptime 

β 0 1 2 3 4 5 

PS 0,500 0,841 0,977 0,998 0,999 1,000 

 

The table shows that the safety index βС = 2,74 corresponds to the probability of failure-

free operation PS = 0,992. 
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The result is excellently correlated with V.D. Kostyukov data, although it was obtained 

quickly and easily by the approximate calculation method. 

The fairly simple mathematical calculations, used in the method, can be reduced with 

the help of  nomogram, compiled by the authors of the article (Figure 2), which allows one 

to determine the value of (Var[z])1/2, i.e. the denominator in the expression for the safety 

index β. In the nomogram, σТ and mσT are in MPa, σW and mW in м3. 

 

 

Fig. 2. Nomogram to the definition ][zVar  for quays’ front wall 

 

We determine the probability of failure-free operation of anchor rods. The cross section 

strength of steel anchor rods is determined from the condition 

π d2 σT – 6 Rl ≥ 0, 

where d – is rods’ diameter; 

R – is the anchor force per 1 linear meter of the structure; 

l – distance between anchors. 

 The diameter of the anchor rod can change significantly because of corrosion. 

Therefore, we take d and σT as random uncorrelated values. The spread of anchor forces 

and the distance between the anchors is neglected [9].  The distribution parameters of 

random variables are presented in table 3. 

Table 3. Distribution parameters for anchor rods 

Random value ][ ixi xEm   2/1
])[( ixi xVar  

x1 = d 8,00 10-2 m3 6,00 10-3 m3 

x2 = σТ 2,81 108 Pa 2,70 107 Pa 

 

The equation of the limiting state of anchor rods 

g(x) = π d2 σT – 6 Rl = 0. 

 We linearize the equation for the Taylor expansion: 

g(m) = π md
2 mσT – 6 Rl = 0. 

 We take the anchor force R = 481,5kN, and the distance between anchors l = 1,6 m, 

then 
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 As a result of the calculations, we obtain the safety index 
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In accordance with table 3, we determine the probability of failure-free operation of 

anchor rods PS = 0,844. 

The authors compiled a nomogram for (Var[z])1/2 determination to facilitate the 

calculation of the safety index for anchor rods’ operation (Figure 3). On the nomogram, mσТ 

and σσT in МПа, md and σd are in meters. 

 

 
          

Fig. 3. Nomogram to the definition for anchor rods 

3 Results 

The methodology, proposed by the authors for determining the reliability of structural 

elements by the safety index, can also be used to assess failure probability of various 

structural elements of dock embankments [10].  

9

E3S Web of Conferences 138, 01005 (2019) 
CATPID-2019

https://doi.org/10.1051/e3sconf/201913801005



The authors recommend a quick assessment of the reliability of existing dock facilities 

to use the nomograms proposed in this work, which make it possible to accurately assess 

the state of the studied structural elements 
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