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Abstract. Objectives: Increase quality factor of the CNC machine model in comparison with the 
Uncoupled System by synthesizing Neural Coordinated Control. Synthesis: We synthesized the Neural 
Coordinated Control algorithm based on the coordinated control algorithm and neural control. Experiment: 
Using mathematical modeling we compared the synthesized algo-rithms and the uncoupled system using the 
following criteria: contour error, contour speed error, and score function. Results: The four NCC algorithms 
were synthesized and trained. The experiment shows that synthesized algorithms have better score function 
values and better quality factor values in comparison to the reference Uncoupled System. Conclusion: The 
quality factor of the CNC machine model was successfully in-creased by using the synthesized Neural 
Coordinated Control algorithm. 

1 Introduction 
Increase of quality factor – ratio of contour speed to 

contour error – of contour tracking is a relevant task, 
because systems with high quality factor can make more 
accurate operations or make the same operations faster, 
that increases performance of the machine [1-6]. 

Modern developments in computing technologies 
allow us to implement on practice more computation 
complex algorithms, for example: neural network control 
[7-10], coordinated control algorithms [1-3, 11, 12], 
fuzzy logic control [13,14], and other [15-18]. 

In this paper we propose the neural coordinated 
control (NCC) which is based on the coordinated control 
algorithm and neural control. This combination is chosen 
by the following reasons: 

• The coordinated control algorithm is an algorithm 
with the coupled structure which has several advantages 
over systems with the uncoupled structure (for example 
the Uncouple System) [1,4-6]: contour error is 
minimized directly – the Uncoupled System minimizes 
contour error indirectly through minimizations of 
coordinated errors; it is possible to set control priorities 
by choosing ratio of contour error and contour speed 
error. In many cases low contour error is preferable to 
low contour speed error; etc [4]; 

• Neural network regulators can be used to form 
complex non-linear combinations of input parameters on 
its outputs. This can be used to create unique and 
specialized control for specific control tasks with 
relatively small amount of dynamic information [7-9]. 

The goal of the paper: Increase quality factor of the 
CNC machine model in comparison with the Uncoupled 
System by using Neural Coordinated Control. 

The tasks: 
1. Synthesize several NCC with different neural 

network structures and different training sets; 
2. Train the neural networks using the chosen score 

function and gradient descent learning algorithm; 
Compare the synthesized algorithms and the 

Uncoupled System using the following criteria: the root 
mean square quality factor, the minimum quality factor, 
the root mean square contour speed error and the score 
function. 

2 Synthesis 
The simplified CNC machine model (1) fig. 1 has been 
chosen as the plant. 
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Fig. 1. The plant structure. 

As previously been mentioned the NCC is based on 
the coordinated control algorithm [1,2,4,19]. The main 
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idea of the coordinated control algorithm is forming the 
speed control vector as combination of two vectors fig. 
2: the tangent speed (Vτ), which sets movement along 
the trajectory, and the normal speed (Vn), which 
minimizes contour error. 

Contour error (Ek) – minimal distance between the 
end effector position and the trajectory. 

 
Fig. 2. The speed control vector as a combination of the 
tangent speed and the normal speed. 

The structure of NCC is shown on the Fig. 3.  

 
Fig. 3. The structure of NCC. 

The trajectory is the circular arc:  
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The tangent speed for circular arc:  
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The neural regulator for NCC has one of these 
structures fig. 4. They are used to form the normal speed 
(4), where Ku is a positive gain.  

 

Fig. 4. The structures of the neural regulators. Left – neural 
network without hidden layers; Right – neural network with 
one hidden layer. 
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The neural networks are trained using gradient 
descent learning algorithm [20]. The learning criterion or 
the score function (5) is the linear convolution [21] of 
the two criteria: the root mean square of contour error 
and the root mean square of contour speed error. In 
practice a low value of contour speed is usually 
preferable to a low value of contour speed error, hence 
α2 is chosen to be lower than α1.  

                     1 2 k vkScore E Eα α= +   (5) 

Contour error (Ek) and contour speed error (Evk) for 
the circular arc are:  
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3 Experiment 
The experiment was conducted using mathematical 

model calculation. 
We synthesized and trained four algorithms: 

NR_L0E1, NR_L0E3, NR_L1E1 and NR_L1E3, where: 
• L0 and L1 – number of hidden layers: 0 and 1 

accordingly; 
• E1 and E3 – size of training set: 1 and 3 elements 

accordingly. 
The synthesized algorithms were compared with the 

Uncoupled System fig. 5. .  

 
Fig. 5. The structure of the reference Uncoupled System. 

Parameters: 
• The plant parameter fig. 1: 

  𝑇𝑇𝐿𝐿 = 0.001 [𝑠𝑠] 
• Contour speed for all algorithms (3, 6) 
  𝑉𝑉𝑘𝑘 = 0.4 [𝑚𝑚/𝑠𝑠] 
• The training sets (2): 
  E1: R = 9 [m] 
  E3: R = 9, 11, 13 [m] 
• The initial position, speed and residuals: 
  𝑥𝑥0 = −𝑅𝑅 [𝑚𝑚];    𝑦𝑦0 = 0[𝑚𝑚];    𝐸𝐸𝑘𝑘0 = 0 
  𝑥̇𝑥0 = 0 [𝑚𝑚/𝑠𝑠];    𝑦̇𝑦0 = 0[𝑚𝑚/𝑠𝑠];    𝐸𝐸𝑣𝑣𝑣𝑣0 = −𝑉𝑉𝑘𝑘2 
• The neural regulator gain (4): 
  𝐾𝐾𝑢𝑢 = 0.8 
• The score coefficients (5): 
  𝛼𝛼1 = 1;    𝛼𝛼2 = 0.001 
• The simulation time: 
  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 10 [𝑠𝑠] 
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• Initiation of the neural networks weights and 
biases: 

  Weights: Wij = -0.1…0.1 
  Biases: bij = -0.1…0.1 
Since the score function is generally not convex [10] 

– i.e. have several local minimums – the neural networks 
were initialized randomly and were trained several times. 

The experiment results are presented in table 1. 

Table 1.  The results of the experiment. 

Type 
R, 
m Score <ν>, 1/s 

<Evk>, 
m/s 

ν_min, 
1/s 

US 

9 0.0287 13.9373 0.0080 7.8125 
10 0.0259 15.4440 0.0080 8.6768 
11 0.0235 17.0213 0.0080 9.5465 
12 0.0216 18.5185 0.0080 10.3896 
13 0.0199 20.1005 0.0080 11.2676 

NR_L0E1 

9 0.0086 46.5116 0.0242 17.8571 
10 0.0050 80.0000 0.0241 29.1971 
11 0.0034 117.6471 0.0241 59.7015 
12 0.0044 90.9091 0.0241 66.6667 
13 0.0062 64.5161 0.0241 50.6329 

NR_L0E3 

9 0.0019 222.2222 0.0257 78.4314 
10 0.0024 173.9130 0.0257 50.0000 
11 0.0034 117.6471 0.0258 38.4615 
12 0.0045 88.8889 0.0259 32.2581 
13 0.0054 74.0741 0.0259 28.5714 

NR_L1E1 

9 0.0082 48.7805 0.0120 19.7044 
10 0.0047 85.1064 0.0120 31.7460 
11 0.0030 133.3333 0.0120 63.4921 
12 0.0038 105.2632 0.0119 76.9231 
13 0.0055 72.7273 0.0119 57.9710 

NR_L1E3 

9 0.0131 30.5344 0.0105 14.1343 
10 0.0095 42.1053 0.0105 18.8679 
11 0.0065 61.5385 0.0105 25.9740 
12 0.0042 95.2381 0.0105 37.7358 
13 0.0025 160.0000 0.0105 60.6061 

 
Using data from table 1 we plotted comparative 

graphs fig. 6.  

 
Fig. 6. The experimental comparative graphs. Top Left – The 
score function to radius (of the circular arc); Top Right – The 
root mean square quality factor to radius; Bottom Left – The 
minimal quality factor to radius; Bottom Right – The root mean 
square contour speed error to radius. Legend: US – the black 
dash-dot-dotted line (-..-) with cross markers (x) ; NR_L0E1 – 
the red solid line (—) with square markers (□) ; NR_L0E3 – 
the blue dashed line (--) with triangular markers (∆) ; 
NR_L1E1 – the green dotted line with circular markers (○) ; 
NR_L1E3 – the orange dash-dotted line with diamond markers 
(◊) 

4 Results 
The four NCC algorithms were synthesized and trained. 
The experiment table 1 and fig. 6 shows that synthesized 
algorithms have better score function values and better 
quality factor values in comparison to the reference 
Uncoupled System. The synthesized algorithms have 
lower contour speed error than the Uncoupled System it 
is a consequence of choosing the relatively small score 
function (3) coefficient α2 = 0.001. 

None of the synthesized algorithms is pareto optimal 
by the score function. It is probably connected with the 
non-convexity of the score function, i.e. during learning 
process the neural regulators got into local minimums 

5 Conclusion 
From the results we can conclude that the quality factor 
of the CNC machine model was increased – in 
comparison to the Uncoupled System – by using the 
Neural Coordinated Control.  

Choosing more complex neural network or having 
more training examples does not lead to a pareto optimal 
by score solution. The reason behind this may be non-
convexity of the score function. 

The synthesized algorithms have worse – than the 
Uncoupled System – speed error due to the chosen score 
coefficients. 

6 Discussion 
The score function has coefficients which might be used 
to set control priorities, i.e. how does these coefficients 
influent the criteria? 

How more complex neural network’s structures and 
bigger training sets will influence the criteria? 

The neural networks might be trained using different 
algorithms, for example using a generic algorithm, 
which should better handle non-convex score functions 
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