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Abstract: The sensitivity-based damage identification method receives much attention due to its ability to 
identify structural damages at element level. This paper aims to discuss the influence of two different 
deduction algorithms of sensitivity matrix, the analytical method and the numerical difference method, on 
the parameter identification results of structures with the same identification index. In order to compare the 
difference between the two sensitivity-based damage identification methods, the frequency-domain mode 
shape and the time-domain acceleration response information are used as the updating objectives, 
respectively. And then, the sensitivity matrices of the updating objectives to the same identification index, 
structural element stiffness parameters, are respectively derived based on the analytical method and the 
numerical difference method. Finally, a simply supported box girder bridge is used to illustrate the 
difference between the two sensitivity-based methods. Numerical simulations with initial model errors and 
measurement noise show the two types of methods both can accurately detect local damages and identify 
unknown initial model errors. The presence of random noise has some bad effect on the identified results of 
structural parameters, but the identified accuracy is still acceptable for normal noise level. 

1 Introduction 
Civil structures will inevitably produce damage 
accumulation in their use process. In order to ensure the 
normal use of structural functions and prevent the 
occurrence of dangerous engineering accidents, it is 
necessary to carry out health monitoring on the structures 
in service. Structural damage identification is the core of 
structural health monitoring systems[1,2]. In order to 
diagnose the local damages of the structures with the 
response information from the sensors, the parameters of 
the structure need to be inverted. The widely used 
methods of structural parameter inversion based on 
dynamic response are model correction methods. Because 
of the ability to identify the damage degree of element 
level, more and more attentions have been paid to the 
sensitivity-based model modification method[3,4]. The 
sensitivity matrix directly reflects the partial derivative 
relationship between the dynamic response of the 
structures and the stiffness parameters of the structure 
elements, and determines the quality of the parameter 
identification results. There are two main methods to 
construct the sensitivity matrix, who are the analytical 
method[5,6] and the numerical difference method[7,8]. 
Both of them are based on the finite element model. 
However, the former is derived from the dynamic formula, 
while the latter is based on the theory of the first-order 
Taylor expansion. They both can accurately identify the 
local damage information within the scope of online 
elasticity. However, due to the different formation of 

them, there is slightly difference between the two types of 
methods in recognition ability and application scope.  

In this paper, the principle of the sensitivity methods 
taking modal shape and dynamic response acceleration 
as the updating objectives is briefly introduced, and then 
they are used to investigate the difference between the 
two sensitivity-based methods based on a numerical 
example of a simply supported box girder bridge of 30 
meters in length. 

2 Basic theories 

2.1 Sensitivity matrix in the analytical method  

2.1.1 Sensitivity matrix based on modal shape 

Assuming that the structural damage is caused by the 
reduction of structural stiffness, which is independent of 
other structural characteristics, and that the change of 
stiffness is so small that it will not affect structural 
continuity and damping. Assuming that a small stiffness 
change occurs in the stiffness of an n-DOF system 
without considering damping, and the system response 
will change correspondingly 
 ( ) ( ) ( )2 2 0i i i iω ω + Δ − + Δ + Δ = K K M Φ Φ   (1) 

where K and M is n × n stiffness and mass matrices of 
the system; ωi and Φi is the ith natural frequency and 
mode shape vector; Δωi and ΔΦi is the deviation of 
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system response due ΔK. Neglecting second-order terms, 
eq.(1) can be written as 
 ( )2 2

i i i i iω ω− Δ = Δ − ΔK M Φ MΦ KΦ   (2) 
ΔΦi can be express as a linear combination of mode 
shapes of the original system[9] 
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where dik is the coefficient of ith linear combination 
corresponding to the kth mode shapes. Substituting Eq.(3) 
into Eq.(2) and multiplying Φr

T
 to both sides of Eq.(2) 
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because of the orthogonality of mode shape, dik can be 
written as 
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from Eq.(4) it can be found that drr = 0. Therefore Eq.(3) 
can be rewritten as 
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within the scope of online elasticity, the reduction of 
structural stiffness Δ K can be expressed as the 
summation of each elemental stiffness matrix multiplied 
by a damage coefficient 
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where Kk and αk is the kth elemental stiffness matrix and 
its damage coefficient; nel is the total number of element. 
Substituting Eq.(7) into Eq.(6), and Eq.(6) can be 
rewritten as 
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where α ={α1 α2 … αnel }T, and the vector of sensitivity 
coefficients of the ith mode shape SΦi can be written as 
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2.1.2 Sensitivity matrix based on dynamic response  

The equations of motion of a n-DOF damped system can 
be expressed as 
 ( ) ( ) ( ) ( ) ( )t t t t t+ + = ⋅My Cy Ky L F    (10) 

where C is the damping matrix. According to 
Rayleigh damping theory, it can be expressed as C = 
a1M + a2K, and a1, a2 are the Rayleigh damping 
coefficient; y(t), 𝐲ሶ(𝑡), and 𝐲ሷ(𝑡) are, respectively, the 
displacement, velocity and acceleration response of the 
structure at time t; L(t) is the mapping matrix relating the 
external excitation F(t) to the corresponding DOFs of the 
structure. Neglecting the load uncertainty, L(t) and F(t) 
must be fully known at any time. 

Assuming the structural local damages are in the 
form of fractional change in the stiffness of an element. 

Performing differentiation to both sides of the Eq.(10) 
with respect to the physical parameters of structures, we 
have 

( ) ( ) ( ) ( ) ( )2k k
k k k

t t t
t a t

α α α
∂ ∂ ∂

+ + = − −
∂ ∂ ∂
y y y

M C K K y K y
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 (11) 
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where 𝐒𝒚ሷ (௧) is the vector of sensitivity coefficients of the 
response acceleration 𝒚ሷ  at time t; డ𝒚ሷ (௧)డఈೖ  is the 
coefficient of kth elemental stiffness parameter 𝛼௞ , 
which is calculated by numerical integration method 
from Eq.(11); a2 represents the Rayleigh damping 
coefficient related to the stiffness matrix. 

2.2 Sensitivity matrix in the numerical difference 
method 

The difference sensitivity is based on the first-order 
Taylor expansion principle, also known as the first-order 
perturbation method. Setting a perturbation p for 
stiffness parameter αk, then the response calculated by 
the finite element method will produce a variation value 
ΔR. So the sensitivity of the response can be expressed 
as the ratio between ΔR and p 

 1 2 nel

p p p
Δ Δ Δ

=  
 

RR RS    (13) 

where ΔRk = Rk(αk+p) – Rk(αk). 

2.3 Iterative recognition algorithm based on 
response sensitivity 

After the dynamic indexes (modal shape, accelerations 
etc.) and their sensitivities with respect to the physical 
parameters of the structure are obtained, the next step is 
to find the vector of physical parameters by matching the 
calculated dynamic indexes and the measured dynamic 
indexes in a iterative optimization procedure. The basic 
theory of sensitivity-based recognition algorithm is that 
the response from field measurements can be expressed 
in a first-order Taylor expansion as 
 m c= + ⋅ ΔR R S α   (14) 
where Rc is the response from the finite element model; 
S is the sensitivity matrix. Eq.(14) can be rewritten as 
 ( )1, 0,1,2,k k k k+Δ = ⋅ Δ =R S α    (15) 

The response vector Rc and sensitivity matrix S need 
to be updated continuously in order to complete the 
iteration of the algorithm, this is mainly because the 
damage detection equation is expressed in the form 
of  first-order Taylor expansion, which will result in a 
non-linear relationship between ΔR and Δα in Eq.(15) 
The error caused by this non-linearity can be reduced by 
successive iterative process. The flowchart of 
sensitivity-based damage identification method is shown 
in Fig.1. 
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Fig.1. Flow chart of sensitivity-based damage identification 
algorithm  

In Fig.1, the superscript k is the iteration number. 
The pre-selected criterion δ is equal to 10-10 in this 
study. The iterative damage detection equation in Eq. (15) 
is solved by the adaptive Tikhonov regulation method 
[10]. Finally, the damage parameters can be obtained by 
Δα = ΣΔαk+1 . 

3 Numerical simulations 
A simply supported box girder bridge of 30 meters in 
length is numerically used to illustrate the differences 
between the two sensitivity methods. The finite element 
model of the bridge consists of 31 nodes and 30 plane 
Euler beam elements of 1 meter in length. The Young's 
modulus of structural material E=3.45×1010N/m2, the 
bending moment of inertia I=12.752m4, the poisson's 
ratio γ=0.2. According to the finite element method, the 
first eighth natural frequencies of the complete model are 
18.43, 71.89, 160.49, 283.52, 439.88, 627.97, 845.45, 
1089.03Hz. In order to compare the influence of 
different sensitivity matrix on the results of damage 
identification, a structural damage scenario is set up with 
the Young's modulus of the 12th, 17th, and 25th element 
reduced by 10%, 5% and 15%. On the basis of these 
damages, a group of Gaussian white noise is generated 
randomly according to 1% of the value of the original 
structural stiffness parameter, and it is added to the 
stiffness parameters of the structure together with the 
damage parameters to simulate the model errors. 

3.1 Identification based on modal shape 

Fig.2 and Fig.3 illustrate the sensitivity diagram of the 
analytical method and the numerical difference method 
of the 1th and the 10th modal shapes of the intact 
structure under the environmental excitation. The letter d 
in the figure indicates the perturbation step size of 
element stiffness parameter in the difference method. 

 

Fig.2. The fluctuation of the 1th modal shape sensitivity  

 

Fig. 3. The fluctuation of the10th modal shape sensitivity 

It can be seen from the two figures that the wave 
forms of each type of sensitivity vector are very similar, 
but with the increase of the perturbation step size d, the 
amplitude difference in sensitivity vector between the 
difference and analytical methods increases when the 
step size exceeds 0.01.  

In order to explore the effects of different sensitivity 
methods based on modal shape on the damage 
identification results, the same damage scenario are 
identified according to the different sensitivity methods 
including the analytical method, and the difference 
method with d=0.001, d=0.01, d=0.05 and d=0.1 
respectively. Table 1 shows the error 2-norm of damage 
identification results corresponding to different 
sensitivity method. The significant number after the 
decimal point is reserved for the fourth number only. 

Table 1. Error 2-norm of damage identification results 

 Analytic method d=0.001 d=0.01 d=0.05

Determined 0.4998 7.9257 7.1289 -
Over-determined 0 0 0 0
 

It can be seen from Table 1 that the difference 
parameter perturbation will have a significant impact on 
the damage identification results when the identification 
equations are determined. However, the negative effect 
will be reduced when the identification equations are 
strict over-determined. For the over-determined case, 
both the analytic method and the difference method with 
d-0.001, d-0.01, d-0.05 are both capable of accurately 
identify structural damages, but the difference method 
with d-0.1 fails. Moreover, the identification results with 
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small error can be obtained by the analytical sensitivity 
method even with the determined identification 
equations. Because of the incompleteness of measuring 
points and the lack of high-order frequency-domain 
information, the identification equations based on 
frequency-domain information can only achieve the 
damage identification with the minimum number of 
equations. This has a certain engineering significance. 

In general, it is difficult to get very accurate 
identification results with few identification equations. 
Therefore it is necessary to optimize the location of 
measuring points. The optimization method of 
measuring points is based on the correlation between 
sensitivity vectors. This method is similar to the modal 
assurance criterion of mode shapes. The specific 
optimization process can refer to the sensitivity vector 
correlation optimization method of time-domain 
information[11].  

 

Fig.4. Damage identification results with 3% measurement 
noise based on modal shape 

 

Fig.5. Damage identification results with 5% measurement 
noise based on modal shape 

Fig.4 and Fig.5 show the damage identification 
results of the analytical sensitivity method and the 
differential sensitivity method with d=0.01 from the 
over-determined equations under the scenario of 3% and 
5% measurement noise. It can be seen from these figures 
that there is not much difference between the analytical 
sensitivity method and the differential sensitivity method 
with over-determined equations. This indicates that both 
the analytical sensitivity method and the differential 
sensitivity method based on modal shapes can be used to 
identify structural damages with enough equations and 
suitable perturbation step size, and they have good noise 
robustness. 

3.2 Identification method based on dynamic 
acceleration 

Fig.6 shows the sensitivity vector of the midspan 
position of the bridge structure under a 105N moving 
concentrated force at a certain time. Because the position 
of the force changes with time, therefore, it is necessary 
to consider the equivalent node load of the concentrated 
force calculated according to the position of the action 
point as the complete external excitation[12]. It can be 
seen from this figure that the sensitivity vectors of 
different methods based on time-domain information 
have the similar wave form, and the difference amplitude 
between the analytical sensitivity method and the 
differential sensitivity method also increases with the 
increase of the perturbation step size. The amplitude of 
sensitivity vector with d=0.001 and d=0.01 in the 
difference method is also very close to that of the 
analytical method. 

 

Fig.6. The fluctuation of response acceleration sensitivity 

In terms of index parameters, the damage 
identification method based on time-domain information 
can get enough identification equations, and it is 
generally difficult to find the case that the equations are 
determined or underdetermined. Therefore, the damage 
identification of the whole structure can be realized by 
only using the acceleration information from the 
measuring point of the midspan position of the bridge 
structure. Fig.7, Fig.8 and Fig.9 show the damage 
identification results of the two sensitivity methods with 
noise-free, 3% and 5% measurement noise, where the 
perturbation step size d=0.01 in the difference method. 

It can be seen from Fig.7 that both the structural 
damages and initial model errors are accurately 
identified by using the two types of methods in the noise 
free case. Whereas, Fig.8 and Fig.9 illustrates the 
presence of random noise has some bad effect on the 
identified results of structural parameters, but the 
identified accuracy is still acceptable for this noise level. 
It may be concluded that measurement noise is the most 
important influencing factor, and measurements with a 
high accuracy are therefore needed for the identification 
method based on dynamical response. 
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Fig. 7. Damage identification results without measurement 
noise based on dynamic responses  

 

Fig. 8. Damage identification results with 3% measurement 
noise based on dynamic responses 

 

Fig. 9. Damage identification results with 5% measurement 
noise based on dynamic responses 

4 Conclusion 
(1) No matter based on time-domain or 
frequency-domain parameters, each row vector in 
sensitivity matrix constructed by analytical method or 
numerical difference method has the same wave form, 
but the amplitude of fluctuation is slightly different. 
Both of them have the same convergence form and can 
get similar recognition results. In addition, the optimal 
combination of measurement points obtained by the 
same sensor optimization method based on sensitivity is 
the same. 

(2) When the frequency-domain information is used 
as the target parameter of model modification, the 

number of identification equations is too small due to the 
incompleteness of measuring points and the difficulty of 
measuring high-order modal information, the 
identification result of analytical sensitivity method is 
more accurate and stable. 

(3) Although the two sensitivity damage 
identification methods have the same convergence form 
in the identification process, the analytical method does 
not need to calculate the structural response repeatedly 
when constructing the sensitivity, which can save time 
for the high computation problem. It takes a lot of time 
to calculate the structural response repeatedly when 
using the numerical difference method to build the 
sensitivity. But the concept of numerical difference 
method is clear and the formula is simple. For the 
complex response derived information, the differential 
sensitivity method has a more extensive application 
prospect. 

(4) Considering the stability of the recognition 
algorithm, the parameter perturbation value should not 
be more than 0.01 when using the numerical difference 
method to construct the sensitivity matrix. 
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