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Abstract. Landslide is the main disaster in the mountainous area. Based on landslide information content 
models of remote sensing, the work used the aerial and space remote sensing of UltraCamXp WA, Beijing-1 
and Landsat images in Wudang, Guiyang to obtain the relative relief, slope, curvature of bedding slope, 
LUCC, geology and TWI. Finally, we analyzed the spatial susceptibility in the research area. Results 
showed that there were 42, 56 and 46 potential landslide groups in the high, higher and medium risk regions. 
The controlling factors of landslides in Wudang, Guiyang refer to the precipitation and precipitation 
intensity. The densely-populated regions also have the high risk of landslide, and the risk of landslide 
generally decreases from cities to rural areas. Through the space prediction research of landslide disasters, it 
is expected to provide valuable protection for regional security and harmonious development, and then 
sustainable development of Guizhou Province. 

1 Introduction  
As the main type of disasters in mountain areas, 
landslide can be predicted in the space and time 
dimensions. There are qualitative and quantitative 
methods for landslide space prediction. Depending on 
expert experiences, the qualitative and semi-qualitative 
methods have strong subjective severance[1-2]. In contrast, 
the quantitative method shows the advantages of 
objectivity and efficiency by exploring the quantitative 
factors in landslides. Probability and statistical methods 
are commonly used in the landslide space prediction[3-5]. 
According to comparative analysis of three methods, 
ANN has better application effect than logistic 
regression and frequency ratio methods[5-9]. Landslide 
prediction is greatly affected by the selection of landslide 
influencing factors, which varies depending on the 
region, type and researcher[9-11]. General landslide 
influencing factors consist of precipitation, slope, aspect, 
land type, lithology and structure. Besides, the 
precipitation characteristics affect the landslide spatial 
prediction[12-14]. Tongzhen Yan[15] divided the landslide 
prediction theory into deterministic, statistical analysis 
and information models, where the first two essentially 
belong to the white and black box models; the rest is 
somewhere between white and black boxes. The 
information content model was used to analyze the 
landslide space prediction in Wudang(fig.1), Guiyang 
with urban and rural characteristics in Karst 
mountainous areas. Through spatial prediction research 
of landslide disasters, it is expected to provide valuable 

protection for regional security and harmonious 
development. 

2 Materials and Methods 

2.1 Landslide factors 

This study area is located at Northeast of Guiyang, and 
coordinates of latitude and longitud are 106.718°E-
107.049°E, 26.570°N-26.911°N, respectively.The area 
of this study area is 686km2.The factor analysis method 
is used to determine the landslide factors and find the 
main factors. The m variables are expressed as the linear 
combinations of factors as follows. 

X = AF + CU                            (1)  
where X is the original variable represented by Matrix 
p×1; F the common factor by Matrix k×1; A the factor 
load matrix by Matrix p×k; U the special of each 
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factor load matrix. In principal component analysis, the 
principal factor model is summarized as X=AF (the 
meaning is the same as above). Through the principal 
component analysis, few factors containing most 
information are found to analyze the essence of landslide. 
The factor load can be calculated by Equation (2). 

=ij ij ja a λ                     (2) 
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aij is the feature vector p (j=1,2,... ,m) corresponding to 
feature value λ (j=1,2,...m), expressed as a unit vector; 

jλ  is the square root of the j-th feature value, indicating 

the importance of factor. 

2.2 Landslide information model 

The information content model is used to analyze the 
landslide space prediction in research area (Equation (3)). 

…… 1 2
1 2 2
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P(y)
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As the terms in statistical probability, P(y,x1,x2,…,xn) 
and P(y) represent the information content by the 
landslide factors x1,x2,…, xn. When P(y,x1,x2,…, xn)>P(y), 
then the information content I(y, x1,x2,…, xn)>0, 
indicating the high probability of landslide occurrence. 
When I(y,x1,x2,…,xn)<0, there is low probability of 
landslide occurrence. Geographical cells are classified 
according to geology, topography, hydrology and LUCC. 
After dividing the research area into N model units, there 
are No units with landslide. There are M0 units having 
landslide disasters among M combined units of x1,x2,…, 
xn with the same attribute. 

 In general, landslide is the comprehensive effect of 
regional multi-factors. Considering the multi-factors, 
Equation (4) can be transformed into Equation (5). 
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After screening, 6 key landslide factors are determined, 
including relative height difference, slope, forward slope

 

 

Fig.1. Study area and its location map 

curvature, land use/cover change (LUCC), geological 
and topographical wetness index (TWI). 

3 Results and analysis 

3.1 Landslide factors 

After vectorizing the 1:200000 geological map, the 
30m×30m lattice was used for meshing according to the 
1:50000 topographic map and digital elevation model 
(DEM, 30m). Before the information extraction and 
subsequent processing, other basic data were conducted 
with relative geometric correction based on the 
topographic map. After that, the DEM was used to 
extract relative height difference, slope, forward slope 
curvature and TWI. Landsat 8 OLI was used for the 
extraction of LUCC.  

3.2 Results and analysis 

Based on the spatial analysis function of ArcGIS, the 
single factor information content of each landslide factor 
was calculated by Equation (4). Only the information 
content calculation and classification parts were listed 
for the LUCC and geological factors. Then, the single 
factor information content calculated by Equation (4) 
was synthesized to obtain the comprehensive landslide 
information content in research area. After calculation, 
the landslide information content was 0-10.76 in 
research area. Combined with the Nature Break method 
and the group-occurring landslides, the landslide 
information content was divided into higher risk region 
(4.00, 10.76], high risk region (2.50, 4.00], medium risk 
region (1.50, 2.50], lower risk region (0.70, 1.50] and 
low risk region (0, 0.70]. Wherein, the high risk region 
had a total area of 4.92 km2, with 42 potential landslide 
groups. The higher risk region had 56 potential landslide 
groups, covering a total area of 52.25 km2. The middle 
risk region had a total area of 165.16 km2, with 46 
landslide groups. The lower and low risk regions had the 
areas of 202.66 and 261.01 km2, respectively. The total 
area was 686.00 km2(fig.2). 

For LUCC, the medium-coverage, low-coverage 
grassland and sparse forest land had the higher landslide 
risk and large landslide density, with the information 
contents of 0.932, 1.621 and 1.240, respectively. 
Oppositely, the forest land was the most stable region. 
Therefore, the vegetation was important to the stability 
of landslides. The region with higher TWI value had 
greater development potential of saturation region. It 
easily reached saturation and formed a weak region, 
leading to the high risk of landslide. In Wudang, the 
region of TWI>7 had the highest risk of landslide, with 
the landslide information content of 0.200. The region 
with the information content between 6.0 and 7.0 had the 
higher risk of landslide, with the landslide information 
content of 0.167. The concave and composite slopes had 
the high risk of landslide, with the information contents 
of 0.474 and 0.167, respectively. The relative height 
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difference of the terrain had the significant 

 
 

Fig.2. Landslide susceptibility mapping in Wudang, Guiyang 

 
 

Fig.3. Overlaying analysis of landslide risk and night-time light 

correlation with the risk of landslide. In the regions with 
relative height differences of 150-200, 200-250 and 250-
300 m, the landslide information contents were 0.209, 
0.363 and 1.168, respectively. The information content 
was only -0.806 in the region with relative height 
difference of less than 100 m. The landslide risk was 
directly related with the relative height difference. The 
larger height difference meant the greater landslide 
information and higher landslide risk. After the field 
verification of landslide prediction by GPS and SLR 

cameras, we analyzed the impact of slope landslide risk 
on regional human activities based on slope stability. 
The project took the schools with the highest population 
density and quantity as the analytic targets. 
Superimposed landslide prediction, school location and 
3D terrain (2.5 times magnification) showed that 
Wudang Shunhai Primary School (106.626N, 26.625E), 
Guiyang Xintian Driving Training School (106.743N, 
26.621E), Quanlin Enterprise Group Automobile Driver 
Training School (106.747N, 26.622E), Jinjiang Hualei 
Kindergarten (106.762N, 26.643E) and Wudang Party 
School (106.750N, 26.635E) were most affected by 
landslides in Wudang.  

The main reason is that these schools are either built 
on steep slopes or too close to steep slopes. Shunhai 
Primary School is built on an earthy steep slope in 
Shunhai. The roads pass through the school gate and 
behind the school, causing the high risk of landslides in 
the region. Xintian Driving School and Quanlin Driving 
School are located at the front edge of soil slope, with 
high risk of landslide. Shuijinhuadu Kindergarten is also 
located at the front edge of the soil slope. In contrast, the 
trailing edge of the Wudang Party School is a stone slope, 
which is easily affected by the collapse. Landslide 
significantly affects the Xintian First Primary School and 
Guizhou Normal College in Wudang. For Xintian First 
Primary School, the risk of landslide comes from the 
mountain behind the teaching building. For Guizhou 
Normal College, the risk is from the mountain behind 
Jianhu Lake. Two small landslides have occurred in this 
region. Although with the low overall risk of landslide in 
Guizhou Normal College, the region near the mountain 
has high risk and probability of landslides.  
Urban night lighting area map of Wudang is obtained by 
extracting the positive region from DMSP/OLS night 
lighting data of NASA in 2013 (Fig. 3). The lighting area 
is distributed in the part of city expansion in Guiyang, 
covering the area of nearly 200 km2. Nearly the half 
landslide risk regions in Wudang are distributed in the 
urban regions with high population density. With the 
highest landslide risk, Xintian and Gaoxin Community 
Service Centers have the population densities of 1,509 
and 2,705 per km2, respectively. High vulnerability of 
landslides is caused by high population and economic 
density in urban regions.  

Based on the detailed vector boundary file of 
administrative division, we analyzed the landslide space 
prediction to collect the landslide prediction data of each 
township in Wudang. Wherein, Xintianzhai has the 
highest risk of landslide, with the higher risk and higher 
risk regions accounting for 5.3 and 21.3% of total area, 
respectively. Xiaba Town has the second highest risk of 
landslide, with the higher risk and high risk regions 
accounting for 1.3 and 17.9%, respectively. Dongfeng 
Town has the high risk of landslide, with the high risk 
and high risk regions accounting for 0.3 and 6.5%, 
respectively. Shuitian Town has the significant risk of 
landslide, with the high risk and high risk regions 
accounting for 0.13 and 7.1%, respectively. In Xinchang 
and Yangchang Town, the high risk regions are less than 
0.1%; the high risk areas are 2.6 and 2.3%, respectively. 
In Baiyi, Xinpu and Pianpo Town, the high risk regions 
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approximate to zero; the high risk regions are 3.2, 1.5 
and 1.1%, respectively. 

4 Discussion 
Taking Wudang, Guiyang of Guizhou Province as an 
example, the work conducted the space prediction of 
landslide disasters in Karst region by remote sensing, 
GIS and information-based landslide prediction method. 
The principal component quantitative method was used 
to select the relative height difference, slope direction, 
gradient, type, TWI and LUCC. After extracting the 
LUCC by SVM-based computer classification and visual 
interpretation method, we obtained other landslide 
factors from the DEM based on ArcGIS. The 
information content of single-factor landslide was 
calculated by the spatial analysis function of ArcGIS. 
Then, the information contents of different single-factor 
layers were summed to obtain the comprehensive 
information content. Based on the group-occurring 
landslides and Nature Break method, the landslide 
information content was divided into high, higher, 
medium, lower and low risk regions. Wherein, the higher, 
high and medium risk regions had 42, 56 and 46 
potential landslide groups, respectively.  

Finally, the landslide space prediction was restricted 
by the data accuracy and landslide sample data. The 
former was obtained by the high-resolution remote 
sensing images and DEM, and the latter should 
strengthen the landslide monitoring to provide the 
detailed landslide samples. In addition, the landslide 
interpretation was conducted with multi-temporal remote 
sensing images. Due to the contradiction between people 
and land in the research area, the typicality of most 
landslides is destroyed after disasters. Therefore, few 
landslides can be interpreted by the remote sensing 
image of a phase, which increases the cost of remote 
sensing interpretation. 
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