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Abstract. The aim of this paper is to develop an adequate mathematical 
model, methods and algorithms for solving three-dimensional problems for 
axisymmetric spatial inhomogeneous viscoelastic systems (shells, 
foundations and bases) and to assess the dynamics of protective shell 
(containment) of a nuclear power plant (NPP) under resonant modes of 
vibration. The problem is solved using the semi-analytical finite element 
method. Firstly, the eigenmodes of vibration of the system are determined 

in an elastic three-dimensional statement, secondly, the solution to the 
problem of forced vibrations of viscoelastic systems is constructed using 
the expansion of these eigenmodes of vibration. Viscoelastic properties of 
the material are described using the hereditary Boltzmann-Volterra theory. 
The principle of virtual displacements is used to simulate dynamic 
processes in inhomogeneous viscoelastic systems. The convergence and 
accuracy of the solutions obtained are investigated by test problems. The 
frequency response characteristics (FRC) in various points of the NPP 

containment are estimated at various viscosity parameters of the material. 
It was revealed that the highest amplitude of vibrations in resonance modes 
occurs at close values of the frequency of external effect to the first eigen 
frequencies of the system; in the presence of dense spectra of eigen 
frequencies of the system, the highest amplitudes can occur at higher 
frequencies of external effect. 

1 Introduction 

High rates of construction, the erection of unique structures and buildings, the need to 

fulfill complex industrial orders require further development of the theory of calculating 

spatial axisymmetric structures under the influence of various loads, taking into account 

inelastic properties of the material. 

The vibration intensity of real structures during earthquakes significantly depends on 

the degree of energy dissipation in them. It can be expected that the higher the energy 
dissipation in the structure, the less intense the resonant vibrations at a given level of 

excitation. 
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There are various methods and means of dealing with unacceptable structure vibrations 

aimed to detune from resonances, one of which is to increase the damping properties of the 

material. 

The assessment of dissipative properties of a structure as a whole is a rather difficult 

problem of the dynamics of deformable rigid body even for linear mechanical systems. For 

a complete assessment of dissipative properties of a structure, it is necessary to study its 

natural, steady-state and transient structural vibrations, taking into account internal friction 

in the material. The difficulty of solving this problem is, firstly, due to the lack of models 
more or less realistically describing the phenomenon of internal friction in the material. 

Secondly, solving the problem with well-known models leads to a number of tasks that are 

difficult to implement even on modern computers, due to the lack of computational 

methods and algorithms that meet a number of requirements for the tasks posed. 

As is known, the first attempts at a theoretical description of dissipative properties of 

the materials are associated with the names of Vogt, Maxwell and Kelvin. However, at 

present, the most general model, reflecting all the features of material strain under various 

effects is the hereditary Boltzmann-Volterra theory of viscoelasticity; it describes, along 
with elastic properties, the dissipative properties (internal friction) of the material. 

In engineering practice, various unique spatial axisymmetric structures of complex 

geometry are widely used. Such structures, in particular, include protective shells of nuclear 

power plants (NPP), cooling towers, smokestacks and ventilation pipes of nuclear and 

thermal power plants (NPP and TPP). To ensure reliable operation of such structures under 

various loads, first of all, it is necessary to evaluate their dynamic behavior under various 

effects, considering non-elastic behavior of their material. The solution of such problems 

using modern models that describe the dissipative properties of the material is an 
independent and rather difficult task. 

Along with this, in the available publications, simple models of structures are often used 

as a calculation model for such structures; these simple models do not take into account 

such features as real geometry, design features of structures and dissipative properties of 

their material, which have a direct impact on the value of dynamic behavior of structures. 

When assessing the stress-strain state and dynamic behavior of inhomogeneous 

axisymmetric systems, such as the protective shells of nuclear power plants, attention is 

often paid to elastic properties of the building material only. 
For instance: 

- in [1], a frequency equation was derived. The analysis of frequency and modes of 

vibrations of a shell was conducted. Using the asymptotic method, approximate frequency 

equations and simple calculation formulas were obtained that allow finding the values of 

the minimum natural frequencies of oscillations of the systems under consideration; 

- calculation models of protective shells were developed in [2,3], taking into account the 

actual location of rod-like and prestressed reinforcement, as well as improved calculation 

algorithms, which made it possible to establish the main causes of the appearance and 
growth of tensile stresses in the radial reinforcement of the walls of protective shells; 

- in [4], an equation was obtained for determining the resonant frequencies of 

axisymmetric vibrations of a hollow isotropic elastic ball. General solution of the vector 

equation of motion of the three-dimensional theory of elasticity in a spherical coordinate 

system was used; 

- in [5], a technique was tested for determining, by technogenic vibrations, the dynamic 

characteristics of the reactor compartment of power unit No. 1 of Kalinin NPP. A 

comparison of results with well-known ones showed that the prevailing frequencies in 
vibration spectra correspond to the first mode of vibration, as a rigid body on an elastic 

base; 
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- thestudies in [6] give comparative results of experimental models of dynamic 

characteristics of protective shells, modern calculations of dynamic characteristics and the 

results of field studies; 

- in [7,8], the eigenfrequencies of a cylindrical shell were investigated taking into 

account the thickness changes under various boundary conditions. 

Along with this, the dynamic behavior and stress-strain state (SSS) of various 

structures, with account for features and operating conditions, were studied in [9-23]. 

These are just some of the publications in which the dynamics of various systems and 
structures are evaluated in different ways, and each theory or method used has its 

advantages and disadvantages. 

Therefore, the development of an adequate model, an effective technique and algorithm 

for assessing the dynamic behavior of inhomogeneous axisymmetric structures, taking into 

account their design features and dissipative properties of their material, is an urgent task in 

the mechanics of a deformable rigid body. 

The goal of this work is to develop an adequate mathematical model, methods and 

algorithm for solving the problem of forced steady-state vibrations of viscoelastic 
axisymmetric structures using three-dimensional theory and to estimate the amplitude-

frequency characteristics of protective shells of nuclear power plants under resonant modes 

of vibration. 

2 Materials and methods 

An inhomogeneous spatial ax symmetric system is considered (figure 1) consisting of 

anarch-like structure (protective shell) -1, foundation 2 and soil base 3, which occupy 

volumesV1,V2 and V3,respectively. On the lower part of the system u , a periodic 

kinematic effect  txu ,0


 is set. It is necessary to determine the displacement components 

of the structure points of the system in question (figure1) in the resonant modes of 

oscillations at various frequencies of kinematic effect. 
As is known, theforced steady-state oscillations of a system occur in the presence of 

external periodic impact. In this case, the initial conditions are not taken into account. The 

study of this type of system oscillations allows identifying the dependences of the 

maximum amplitudes of displacements and stresses at any point of the system under 

consideration (figure 1) on the system parameters and external influences. In this case, the 

dissipative properties of the system are manifested mainly in resonance modes. The values 

of resonance amplitudes of displacements and stresses are used as a quantitative estimate of 

the intensity of dissipative processes. 
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Figure 1.Inhomogeneous spatial axisymmetric system. 

To simulate the strain process of the system under consideration (figure 1) under forced 

steady-state vibrations, the principle of virtual displacements is used, according to which 

the sum of all active forces acting on the system, including the inertia forces on virtual 

displacements, is zero, i.e.: 
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Along with (1), to model the strain process, it is necessary to know: 
- kinematic boundary conditions 
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vector [24] 
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- the ratio of the generalized Hooke’s law, connecting stress tensors ij with strain 

tensors ij of the form [24]: 

ijnijkknij  ~2
~


                                

(4) 

,,,, zrkji   
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In the case when the material of the n-th element of the system is elastic, quantities n
~

 

and n
~

 are the Lamé constants; if the material has viscoelastic properties, then  n
~

 and 

n
~

  are the Volterra integral operators and have the following form [16,24, 25]: 
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Here 
nn

ГГ  , - are the kernels of relaxation;  t - an arbitrary function of time; 

ijiu  ,,


- the components of the displacement vector, stress and strain tensors, 

respectively; n  - the density of the material of the system; n  and n  - the Lame 

constants; iju  ,


-isochronous variations of displacements and strains;  t1


- periodic 

function of time; the index n = 1,2,3 means the individual part of the system (i.e. 

construction, foundation, base) to which this characteristic relates; δij– the Kronecker 

symbol;  ,, zrx 


 - cylindrical coordinates;  uuuu zr ,,


 - isplacement vector 

components. 

Now the problem of forced steady-state vibrations of the system under consideration 

(figure 1) is reduced to determining the fields of displacements  txu ,


 and stresses 

 txij ,


 in the system arising under kinematic effects (2), satisfying equations (1), (3), (4), 

(5) and conditions of periodicity at any virtual displacement u


 . 

Next, the solution to variational problem (1), (3), (4), (5) is sought in the form of an 

expansion in modes of natural vibrations [16] of elastic system (figure 1): 
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Where x


{r, z, φ} –are the cylindrical coordinates;  uuuu zr ,,


components of 

displacement vector;  txu ,0


-known function (2) satisfying the boundary conditions of the 

problem;  )(*,)(*,)(*)(* xkuxkzuxkruxku


 - eigenmodes of vibrations of elastic 

system (figure 1); )(tyk - the sought for functions of time; )(tyk - arbitrary constants; N- 

the number of eigenmodesheld in expansion (6). 

The eigenmode of vibrations -  xuk
*

of elastic system (figure 1) is found by the finite 

element method (FEM). To find the eigenmodes of the system’s vibrations (figure 1), the 

semi-analytical finite element method is used, i.e. in one coordinate (in φ), a solution is 

sought using trigonometric functions; in two other coordinates (r, z), the solution is sought 
by the finite element method using an elemental annulus of a triangular section. 
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In the case of forced steady-state oscillations, the integral operators (5) are replaced by 

relations of the form 
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kernel      nn ГГ , s.  

Next, consider the case when the kinematic effect acts on the base u of the system 

(figure 1) 
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Herea0 - is the amplitude, p is the frequency of external effect. 

Substituting (6), (1) into (3), (4) and (5), performing integration over the volume V and 

equalizing to zero the factors at independent variations of ky , lead to a system of linear 

integro-differential equations with respect to the sought for functions  tyk . If toconsider 

that the volume strain of the system occurs according to elastic law(Kn), and shear strain 

( n ) according to viscoelastic law, then we obtain the following system of equations 
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The exact solution to the system of integro-differential equations (9) is sought in the 
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from the solution of which al, blare determined atl=1,2,…, N. 

Here
cs

nn 
  , are the sine and cosine of the Fourier images of relaxation 

kernel  

s

n
 . 

Holding various numbers of Neigenmodes of vibration in (6), we can determine the 

components of the displacement vector  uuuu zr ,,


 at an arbitrary point in the system 

(figure 1). For this, at various frequencies “p” of external action it is necessary to solve 

equation (11), and the results of solution must be included in (10) and (6). 

3 Results and Discussion 

The text of your paper should be formatted as follows: 

As a result of solving this problem, the amplitude-frequency characteristics (AFC) were 

constructed for various points of structure under different frequencies “p”. For different 

points of structure and for various components of the displacement vector  uuuu zr ,,


, 

the AFC were constructed at ~ 150 values of frequency “p” of external influences (8); these 

values of frequency “p” were located more densely in the assumed vicinity of viscoelastic 

resonances. Then, the obtained (constructed) amplitude-frequency characteristics for 

various points of the structure were analyzed to determine the resonant amplitudes and 
frequencies of viscoelastic system in the resonant mode of oscillation. 

As is known, AFC is an indicator of how certain points of the structure react to certain 

effects at certain viscosity parameters under resonant modes of vibration. 

The accuracy of the results obtained was studied while holding in expansion (6) various 

eigenmodes of elastic system. 

When performing specific calculations, elastic moduleE of the foundation and the base 

weretaken two orders of magnitude greater than the elastic modulus of protective shells of 

the system (figure 1). 

 

Figure 2. Geometrical parameters of a structure (protective shell). 

The material of protective shell (figure 1) is hypothetical, i.e.: K=1.45; =0.78,=1/150.  

The relaxation kernel is taken in the form [16, 23, 24]:  
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parameters: 

1) α=0; A=0.008; β=0.003 (low viscosity); 
2) α=0.1; A=0.040; β=0.003 (high viscosity). 
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Geometrical dimensions of the shell (figure 2) in dimensionless form are taken 

as:H/R2=2.346;R1/R2=0.949; r1/R2=0.54; r2/R2=1.468; a/R2=1.662; b/R2=0.684; 

c/R2=0.827; /R2=0.0506. 

Here: K,  –are the instantaneous volume and shear moduli of elasticity. 

Figure 3 shows the convergence of calculation results of AFC for point D for 
displacement component ur while holding different number N ofeigenmodes of vibration of 

elastic system in expansion (6). As the results show, to obtain the AFC with acceptable 

accuracy, it is necessary to hold at least 5 - 6 terms in expansions (6). If tohold less number 

of terms N, the result is far from the true one, i.e. large discrepancies are observed in the 

obtained solutions. This is clearly seen in figure 3. 

The reliability of the results obtained is also proven by the onset of elastic resonance at 

the coincidence of impact frequency “p” with any of the frequencies of natural vibrations, 

i.e.: 1 = 0.03437; 2 =0.10082; 3 =0.12174; 4 =0.15619; 5 =0.19758 (the material 

is considered hypothetically, therefore, the frequency dimension is not set). The 

characteristic response of the system when the frequencies of external impact “p” coincide 

with the frequency of natural vibrations confirms the reliability of the developed model, 

methods and algorithm. 

 

 

Figure 3. AFC of the structure at / ru
/ in point D (figure 2) at high viscosity of the material. 

The convergence of the solution was studied at high and low viscosities, with an 

increase in the number of eigenmodes N in expansion (6) of the sought for solution. It 

turned out that in the case of low viscosity, the addition of two new eigenmodes to the 

solution leads to the appearance of new peaks in the resonance curve without significant 

distortion of the curve far from the eigenfrequencies of the newly added eigenmodes. The 

results obtained at low and high viscosities of the material coincide qualitatively, differing 

only in greater amplitudes in the vicinity of resonances at low viscosity. 

Figure 4 shows, as an example, the AFC for the component of displacements ur 
obtained at high viscosity of the material at one point (point C (figure 2)) of the structure, 
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Figure 4. AFC of the structure at/ ru
/ at point C (figure 2) at high viscosity of the material. 

As seen from these figures, structural vibrations occur in the first, second, and third 

modes of vibrations. The mutual influence of various modes of vibrations on structure 

behavior, even at high viscosity, is not observed. This is apparently due to the non-dense 

spectrum of natural frequencies of the structure. 

4 Conclusions 

1. A mathematical model, methods and algorithm for the study of forced steady-state 

oscillations of inhomogeneous spatial axisymmetric systems in three-dimensional settings 

were developed. 

2. The reliability of the developed methods and algorithms was validated by test 

problems, that is, by comparing,in elastic case,the resonant frequencies of external 

influences with the eigenfrequencies of the system. 
3. The convergence of the obtained results of AFCwas validateddepending on the 

number of held eigenmodes of elastic system. 

4. The steady-state forced oscillations of spatial inhomogeneous viscoelastic 

axisymmetric systems were studied in a three-dimensional statement in resonant modes of 

vibration. 

5. The constructed frequency response characteristics for different points of 

inhomogeneous viscoelastic axisymmetric systems show that the highest amplitude of 

oscillations in the resonant mode occurs at close values of external effect frequency to the 
first eigenfrequencies of a structure; and in the presence of dense eigenfrequency spectra, 

the highest amplitudes can occur at higher frequencies of external effect. 
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