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Abstract: The article is devoted to the determination of second-order 
perturbations in rectangular coordinates and components of the body 
motion to be under study. The main difficulty in solving this problem was 
the choice of a system of differential equations of perturbed motion, the 
coefficients of the projections of the perturbing acceleration are entire 
functions with respect to the independent regularizing variable. This 
circumstance allows constructing a unified algorithm for determining 
perturbations of the second and higher order in the form of finite 
polynomials with respect to some regularizing variables that are selected at 
each stage of approximation. The number of approximations is determined 
by the given accuracy. It is rigorously proven that the introduction of a new 
regularizing variable provides a representation of the right-hand sides of 
the system of differential equations of perturbed motion by finite 
polynomials. Special points are used to reduce the degree of approximating 
polynomials, as well as to choose regularizing variables. 

1 Introduction 
One of the crucial tasks associated with trajectory measurements is the determination of the 
partial derivatives of rectangular coordinates that make up the body motion speed with 
respect to the initial conditions. In operations [1-2] added auxiliary functions, which are 
degree series with respect to the auxiliary variable. In operations [3-5] outlined ways of 
using universal variables in a number of tasks of mechanics to determine disturbances by 
the method of variation of arbitrary constants. In this case, it is convenient to consider the 
components of the initial values of the radius-vector and velocity as osculating variables. 
New methods for determining disturbances keep the standard features of the classical ones, 
while calculating the disturbances, the small parameter method is used, which makes it 
possible to obtain asymptotic decomposition of the solution. Recently, Picard method for 
integration of differential equations is more commonly used, which leads to a convergent 
process of successive approximations that gives a solution to a system of differential 
equations. The error of the solution depends on the accuracy of the initial approximation of 
the perturbation function. 
General principles of the development of perturbation theory in coordinates were analyzed 
in operations [6-8] studied the use of regularizing variables for calculation of trajectories of 
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motion in operation. The results of this research show that the use of regularizing variables 
increases the computer-based accuracy of calculations and significantly reduces the 
calculation time.    
A crucial task of mechanics is to approximate the rectangular coordinates that make up the 
body speed and time in case of disturbed motion by algebraic polynomials of the lowest 
degree with respect to the auxiliary variable with a predetermined degree of accuracy. 

One of the important problems in mechanics is the approximation of rectangular 
coordinates constituting the body velocity and time when the motion is perturbed by the 
lowest degree algebraic polynomials relative to the auxiliary variable with a predetermined 
degree of accuracy.  
This paper describes a special system of differential equations of the perturbed moving 
body and this system is integrated through successive approximations method, which using 
the coordinates and constituents body velocity, take the form of polynomials in powers of 
some auxiliary variable. Its own independent variable is taken at each approximation step. 

2 Mathematical model 
In articles [9-11], there were obtained rectangular coordinates x,y regularized speed 
components x’, y’ time t as an initial approximation in the following form: 
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where  1 1 11 1, , , , , , , , ,x x y y t tx x y yR R R R R R R R R R    - polynomials in powers of the regularizing 

variable w. Let us prove that there are no terms of the form 1
w

 in the rectangular 

coordinates and time of the perturbed motion of the body (1). 
The fundamental matrix of particular solutions of the equations in variations of the 
regularized equations of the 2-body problem is given by:  
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First order perturbations in auxiliary quantities 𝐶𝑖 are defined as follows [11] 
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where X,Y,Z - components of the perturbing acceleration due to the attraction of the body 
under study by the disturbing body, 
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1 2 3( ), ( ), ( )n n nP w P w P w polynomials in powers of the regularizing variable w to some 

degree n, 
1 2 3( , ), ( , ), ( , )n n nP n P n P n    - the errors of the corresponding approximations, which 

can be made arbitrarily small for large n, 4iD  algebraic complement of an element, 
standing in the 4th row and in the i matrix column (2), 5 6,i iD D - introduced similarly, D - 
matrix determinant (2). Substituting expressions (4), (3) into the expressions for the 
rectangular coordinates and time given in article [11], we obtain    
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where 

0, 1, 0, 1,( ), ( ), ( ), ( )x x x xR w R w R w R w   - polynomials in powers of the regularizing variable 
w, 

0, 1, 0, 1,( ; ), ( ; )x x x xR R R R     - measure of inaccuracy for coordinate representation x as an 
amount 

0, ( ) lnxR w w  and a polynomial in powers w. It will be similar for y, z, t. So, the 

coefficient of component 1
w

 in terms of (5) would be zero because as it is equal to the sum 

of works of first row elements of matrix determinant (2) on algebraic additions of other 
rows, which is what we set out to prove. If, as a first approximation, we consider the 
trajectory of close passage from the disturbing body, then the components of the perturbing 
acceleration X, Y, Z have complex conjugate singular points w i  . Components X, Y, 
Z are as follows [11] 

                    
2 2 3/2

( )
[( ) ]

nR wX
w


 

                                   (6) 

where ( )nR w  - some polynomial with respect to the regularizing variable w  power of n. 
The components Y and Z have similar expressions. In order to determine the perturbations 
of the first and second order in rectangular coordinates and the components of the 
regularized velocity of the studied body, it is necessary to take the integral of functions (6). 
Let us introduce a new independent regularizing variable v so as to represent the 
coordinates of the velocity and time in the first approximation for the trajectories of close 
passage from the disturbing body in the form of polynomials in powers of this variable 

w shv , dw chv dv                                            (7) 
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By performing the indicated replacement of an independent variable w , we obtain that the 
sought integral of function (6) has the form: 
                                                          

2 2
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
  ,                                                            (8) 

where ( )nR shv a polynomial function in powers of shv. 
The integral (8) has the following structure 
                          1

0 22 2

( )1 ( , ),nR shv ldv l v l thv Q shv chv
ch v chv

       
                             (9) 

where 0 1 2, ,l l l   some factors, ( , )Q shv chv   a polynomial function in powers of chv. We 
will show that this is true. Let us represent the polynomial ( )nR shv  as follows 

                               2 2 2
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shv , from the polynomial function 2
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2 .ch v  Integrating, we shall obtain: 
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Singular points w i  , which are branch points, are equivalent to those values of the 
independent regularizing variable v for which 0chv  , ,shv i  namely  

                                              
( ), 0,1,2,...
2

v i k k
    

                                               (13)  
We consider the integral of function (6) near a singular point w i  .  
We introduce a new independent variable   in the following way: 
                                                       ( )w i                                                             (14) Using formula (7), we rewrite the expression for chv in the following form: 
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  
                                       (15) From the formula (14), we obtain: 

                                                     w i                                                              (16) We substitute expression (16) into expression (15), as a result we obtain: 
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                                                      (17) 

The expression for chv can be represented as the following factorization 

                  1 3
22 2
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1 1( )1 2 22 (2 ) (2 )
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chv i i i
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   
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Singular point 0   is a branch point.  
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Components of perturbing acceleration X, Y, Z in the vicinity of a singular point 
w i   are represented by factorizations of the following form: 

                                                3 1 1
2 2 2

3 1
22

( ),
b b

X B
 

    


                                          (19) 

where  B   - a function without negative degree   because after replacing the 
independent regularizing variable w by v , the components of the perturbing acceleration 
have the form: 
                                                            

3

( )nR shvX
ch v

  ,                                                         (20) 

where chv is determined by factorizations (18). Perturbations in auxiliary quantities 
iC  in a 

neighborhood of a singular point are defined as follows 
                                            

0

4 5 6( ) ,i i i
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D D DC X Y Z d
D D D





                                         (21) 

( 1,...,7),i        where D - a determinant of the fundamental matrix (2) of particular solutions of equations 
in variations of the regularized equations of the 2-body problem. 
Representing 4 5 6, ,i i iD D D

D D D
 in the form of polynomials in powers of a regularizing variable 

 , we obtain expression (21) as follows  
                                                       0.5

0.5 ( ),i
i i

eC T  
                                                        

 (22) 
( 1,...,7),i                       where  iT   is a function without negative degrees  ,  

0.5ie  - certain coefficients. 
Thus, in the vicinity of the singular point w i   the coordinates and time of the 
perturbed motion of the body under study are represented by functions without negative 
degrees  . 
Let us define the value of the polynomial function ( )nR w  in the singular point w i  .  
Substituting values shv i ; chv=0 into the expression (13), we obtain: 
 

                                    0 1 0 0 1( ) (0) ,nR shv i a i R a ib                                        (23) 
where 1  is a certain complex number. The components of the perturbing acceleration X, Y, Z, taking into account expression (10), 
are representable in the form of factorizations for the neighborhood of points shv i ; 
chv=0 in the form 
                                               0 0

2 2 ( ),a b shvX R chv
ch v ch v


                                                  (24) 

where ( )R chv  - a polynomial in powers of chv. Let us represent dependence 
4 5 6, ,i i iD D D

D D D  in 
the form of polynomials in powers of shv: 
                                      24

0 0( ) ( , ),iD shv c d shv ch v T shv chv
D

                                    (25) 
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where ( , )T shv chv  - a function without negative degrees .chv  Let us define the value of the 

polynomial 4iD
D

 at points v, where ,shv i   0.chv   

Let us draw an analogy between expressions (19) and (24). By comparison, we have the 
coefficient 

3 0 0
2

b a ib


  . 

Perturbations in auxiliary variables iC  will have the following form 
                                         4 5 6( )i i i

i
D D DC X Y Z dv
D D D

                                                    (26) 
Substituting expressions (24) and (25) into expressions (26), we have 

                                 
1 2 3

1 ( , ),i i i i iC a thv a a v R shv chv
chv

       

                                   (27) ( 1,...,7),i 
 where ( , )iR shv chv  - a function without negative degrees chv,  

1 2 3, ,i i ia a a - certain coefficients. 
Extending the above proof for a neighborhood of singular points to the general case, for any 
points of the complex plane v, we have that the coordinates that make up the regularized 
velocity and time in the second approximation for the trajectories of close passage from the 
disturbing body are representable by polynomials with respect to the new regularizing 
variable v. 

3 Conclusions 
The article is devoted to the determination of second-order perturbations in rectangular 
coordinates and components of the body motion to be under study. The main difficulty in 
solving this problem was the choice of a system of differential equations of perturbed 
motion, the coefficients of the projections of the perturbing acceleration are entire functions 
with respect to the independent regularizing variable. This circumstance allows 
constructing a unified algorithm for determining perturbations of the second and higher 
order in the form of finite polynomials with respect to some regularizing variables that are 
selected at each stage of approximation. The number of approximations is determined by 
the given accuracy. It is rigorously proven that the introduction of a new regularizing 
variable provides a representation of the right-hand sides of the system of differential 
equations of perturbed motion by finite polynomials. Special points are used to reduce the 
degree of approximating polynomials, as well as to choose regularizing variables. 
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