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Abstract. In the paper a kind of sinkholes is considered, which is typical 
for areas where soluble rocks are covered by clay’s layer overlapped by 
saturated sands. The presence in soluble rocks of non-filled cavity 
contacting with covering clays is necessary to the sinkhole formation, 
however it can be provoked not only by cavity’s enlarging but else by 
changes of groundwater levels. The mechanism of this complex process 

has been researched by its in-laboratory simulation modelling, and its 
results can possibility to the author to name this phenomenon as “sagging-
collapse sinkholes”, because it includes sagging and collapse of clays 
accompanied by downward moving of sands and sometimes by their 
liquefaction. Modelling technology is given in the paper in detail and the 
conception of investigated process is offered. Except experimental study of 
sagging-sinkhole formation the purposes of the work was quantitative 
forecasting of this geological phenomenon. Forecasts have been developed 

that allow calculating the diameter of the expected sinkhole, particularly. 
An assessment of their reliability is given.  

1 Introduction 

One understands the term “sinkhole” variously but chiefly as karst manifestation [1]. In 

this paper sinkholes consider exclusively as karst phenomena, according Back’s view [2]. 

Sinkholes, which form in the areas where soluble rocks are covered by soils, Waltham and 
Fookes [3] name as “dropout sinkholes” and Gutiérrez et al. [4] as “cover collapse 

sinkholes”. In the United States Zisman [5] considers that these sinkholes can be caused by 

soil collapse without or with soil piping. Nowadays in Russia Khomenko and Tolmachev 

[6] distinguish four genetic types of sinkholes formed in soil cover above karst cavities: 

collapse sinkholes, sagging-collapse sinkholes, liquefaction-collapse sinkholes, and piping-

collapse sinkholes. For a number of reasons, in recent years, the attention of experts 

working in the field of engineering karstology has been mainly attracted by liquefaction-

collapse and piping-collapse sinkholes. Not the last role in this was played by the idea that 

the mechanism of collapse- and sagging-collapse sinkhole formation is simple and 

understandable, since such sinkholes are formed solely under the influence of gravitational 

forces. In fact, this is not true. 
The fact is that for the formation of a collapse- or sagging-collapse sinkhole, it is 

necessary that the cavity be covered by a layer of sufficiently firm and almost impermeable 
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clayey soils. Where the roof of this layer reaches the earth’s surface, the sinkhole formation 

actually proceeds according to a rather simple scheme, even if the cavity is filled with water 

under pressure and hydrostatic forces are superimposed on gravitational forces. According 

Khomenko and Tolmachev [6], this is the process of a collapse sinkhole formation, but if 

saturated cohesionless soils lie above a layer of clayey soils, sagging-collapse sinkholes 

formation takes place and the mechanism of this process is significantly complicated. 

However, it is necessary to comprehend mechanisms of all types of sinkhole formations in 

detail in order to solve not only theoretical but practical tasks. For example, such 

knowledge gives the possibility to choose correctly mitigation measures [7] and to make a 

forensic assessment of all causation under an accident due to a sinkhole appearance [8].  

To predict the conditions and parameters of the collapse sinkhole formation, relatively 
simple geomechanical models based on well-known theoretical solutions can be used [9]. 

Such models are of little use for the sagging-collapse sinkholes, and the development of 

new ones seems extremely difficult, because in this case, the downward movement of rocks 

does not come down to purely gravitational collapse, which can be simply interpreted 

mathematically. In this regard, for the prognostic assessment of the danger of sagging-

collapse sinkhole formation, it seems advisable to use simulation modelling. Such 

modelling was carried out in relation to the settings of the city of Dzerzhinsk, Nizhny 

Novgorod Region, for which the formation of sinkholes of the genetic type under 

consideration is typical. 

 

Fig. 1. Modelling apparatus designed by Khomenko, Makhan’ko, Isaev et al. [10] to simulate soil 
failures, caused by groundwater flow and hidden from direct observation. 

2 Materials and methods 

The experiments were carried out by means of special equipment (Fig. 1), protected by the 

patent of the Russian Federation [10], which is a tank mounted on a horizontal supporting 

axis inside a rigid fixed frame. To simulate the sinkhole formation, the use of all the design 
elements of the apparatus was not required. In this case (Fig. 2), with the horizontal 
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position of the tank, its lower chamber imitated flooded soluble rocks, and the soil hopper 

chamber and the hole located above it in the water-resistant system – a karst cavity. The 

model materials filling the working chamber reproduced the two-layer stratum of insoluble 

covering soils: clays covered by saturated sands. It was necessary to study the reaction of 

the model to the appearance and growth of the cavity under the clay layer. 

 

Fig. 2. Schematized natural settings for the formation of sagging-collapse sinkholes (left) and the 

technological scheme of their in-laboratory simulation modelling (right). See the text for 
explanations. 

An individual experiment was prepared as follows. The water-resistant system was 

mounted so that it was possible to create a single slit-like through hole in it, which was 

capable of expanding discretely in two opposite directions. A layer of clay imitating 
material and having certain physical and mechanical properties was laid on the water-

resistant system. A layer of sand imitating material of the desired height was laid on it. 

In the preparation of 10 experiments from the designed 11, all three hydraulically 

interconnected water intake chambers were gradually filled with water to the intended level 

through one of the side chambers. In experiments No.1 and No.8, the preparation of the 

experiment ended on this. In some experiments, the lower position of the piezometric 

surface of karst waters with respect to the free surface of supra-karst waters was 

reproduced. To do this, the hoses connecting the side water intake chambers to the lower 

one were closed, and the water pressure in it gradually decreased to a predetermined value. 

To simulate the opposite situation in experiment No.10, water was supplied to the apparatus 

only through a movable pressure tank connected by a hose to the lower water intake 

chamber. At the same time, there was no hydraulic connection between the side chambers 
and the bottom chamber, and a certain piezometric pressure was created in it by lifting the 

pressure tank above the bottom of the box filled by model materials. 

The experiment began with the creation of a through transverse gap in the center of the 

water-resistant system with a width of about 10 mm. In the course of the experiment, the 

gap expanded discretely, alternately to the right or to the left with an increment of its width 

by one step by approximately the same amount. The transition to a new stage of expansion 

of the gap was carried out after the complete cessation of changes in the stress state of the 

model, which were recorded using the RVINDS-P-03 radio wave indicator mounted on its 

surface, developed by A.P. Bars. As a rule, the duration of one step did not exceed 5 

minutes. 

The discrete expansion of a rectangular opening in the water-resistant system, which 
can no longer be called a gap with a width of more than 10 cm, continued until there was a 

through collapse of the clay imitating material above it and a downward movement of the 

sand imitating material. After that, the water supply to the apparatus was stopped and, 

thereby, the automatic maintenance of the planned water levels and pressures in the water 

intake chambers was stopped. It was the end of the experiment. 
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  The processes and phenomena observed during the experiments were documented 

using sketches, photo and video filming, as well as using verbal description in a special 

journal. Unfortunately, in some cases, the downward movement of sand imitating material 

did not appear on the surface of the model within clear boundaries. However, this did not 

prevent the full-fledged statistical processing of experimental data. 

In each experiment, only one parameter was subjected to a discrete change in 

increments of about 1 cm from zero to a certain critical value (2a0) – the width of the 

through hole in the water-resistant system (2a). The structure of the model and the 

properties of its materials, as well as the levels and pressures of water in the intake 

chambers, were remaining unchanged, as shown in right part of Figure 2. 

In addition to studying the mechanism of formation of karst sinkholes of a given genetic 
type, the experiments aimed to establish the dependence of parameter 2a0 on the height of 

the layer of clay imitating material (M), its unit weight (γ), cohesion (c), and friction angle 

(φ), on the height of the layer of sand imitating material (m), on the height of the water 

column in the side chambers, counting from the roof of the layer of clay imitating material 

(h), and on the pressure of water on the floor of this layer, expressed in the height of the 

corresponding water column (H). This was achieved by conducting a series of experiments 

designed so that the values of the above parameters, which play the role of arguments in the 

desired dependence, in a certain way changed from experiment to experiment. 

A very important element in the experimental design was the selection of the properties 

of the model materials, and the requirements for materials imitating sands and clays were 

different. In the first case, some kind of granular incoherent material was needed, the same 

for the entire series of experiments, having almost zero cohesion and the same friction 
angle as the covering sands. In the second case, a cohesive plastic material should be used, 

the properties of which can be controlled over a fairly wide range. 

In accordance with these requirements, fine gravel with a negative linearity parameter 

and an angle of internal friction ranging from 31°– 42° was chosen as a sand imitating 

material. This material is completely equivalent to a simulated medium, since according to 

the results of site investigations performed in Dzerzhinsk, the averaged values of the 

friction angle here are 33° for fine sands, 37° for medium-sized sands, and 39° for coarse 

sands. 

Clays were reproduced on models using well-proven mixtures of liquid transformer oil 

with solid granular substances: fine quartz sand (fraction of 0.10 – 0.25 mm), dry powdery 

bentonite clay and ground muscovite, about 0.3 mm in size. These materials are well 
“managed”, do not change their properties for many hours and, which is especially 

important for solving the task, are almost water resistant. During experiments, exfoliation 

processes were observed in clay imitating materials, which indicates their good 

correspondence to the original. 

The relative critical width of the karst cavity (R = 2a0  / b, where b is an indicator having 

a dimension of length) was taken as the dependent variable, and the independent variables 

were water cut of the sands (Z1 = h / m), relative thickness of the clays (Z2 = M / m), 

relative pressure of karst waters (Z3 = H / M), modified Newton number (Z4 = c / γM) and 

the friction coefficient of clays (Z5 = tg φ). The choice of independent variables was not 

random. The first and third variables characterize the hydrogeological situation and the 

stress state of the soil cover, the second – its structure, and the fourth and fifth - the strength 

of the clays. Thus, the main factors that determine the critical size of the karst cavity 
covered by the clays, which ensures their collapse, were taken into account. 

The process reproduced using the model cannot be attributed to well-studied ones. 

Therefore, the so-called orthogonal factorial design of experiments [11] was adopted, which 

is optimal for this situation (Fig. 3). For the period of the modelling, there were some 

deviations from the original design due to technological reasons. 
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Fig. 3. The design of experiments (5 independent variables, 3 levels of each variable, 11 test 
conditions). 

3 Results 

During the experiments, a certain sequence of processes and phenomena leading to the 
formation of a final depression on the surface of the model was observed (Table 1). A 

complete set of these phenomena was not observed in any experiment. However, against 

the general background, experiment No.1 can be considered the most representative one 

(Fig. 4). The generalized picture is as follows. 

Table 1. The processes, which were observed during the modelling. 

Failures 
Experiment numbers 

1 2 3 4 5 6 7 8 9 10 11 

C
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Exfoliation + + + + + + – + + + – 

Visible sagging  + + – + + + + + + + + 

C
o
ll

ap
se

 internal – – – + + – – + – – – 

through + + + + + + + + + + + 

S
an

d
 i

m
it

at
io

n
 

m
at
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Erosion by the upward water 
flow 

+ – – – – – – – – – – 

D
o
w

n
w

ar
d
 

m
o
v
em

en
t smooth, with a 

subsidence formation 
+ – – – – – – – + – – 

sh
ar

p
 internal – – + – – – – – – – + 

through, with a sink 
formation  

+ + + + + + + + + + + 

Note: the “+” sign indicates the presence of a process, and the “–” sign indicates the 
absence of its visual manifestations. 

When a widening slit-like hole in a water-resistant system reaches a certain width, the 

process of exfoliation of clay imitating material was observed in almost all experiments. 

The laws of this process are currently well studied [12]. In this case, at first it was possible 

to see the sedimentation of flakes on the bottom of the soil hopper chamber, which were 

separated from the material and measured by the first millimeters. Their amount and size 

clearly increased with the growth of the gap. Then, in all experiments where it proceeded 
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(except for No.3), the process of exfoliation of the clay imitating material passed to the 

stage of the formation of horizontal and, after them, vertical cracks, the number and sizes of 

which also increased with increasing of gap in the water-resistant system. Cracks closed in 

curved arches, and in three experiments, there was an internal collapse of the material in the 

contours of these arches, without reaching the layer surface. 

 

Fig. 4. The result of simulation modelling of sagging-collapse sinkhole formation during experiment 
No.1.  

Where: 1, Visible sagging of clay imitation material and its exfoliation. 2, Through 

destruction of clay imitation material, the beginning of smooth downward movement of 

sand imitation material, and the formation of subsidence on the model surface. 3, Formation 

of a cavity filled with water in model materials, completion of the subsidence formation, 

and the beginning of the formation of a depression on the surface of the model. 4, 

Disappearance of the cavity filled with water and the completion of the final depression 

formation. 

Where it took place, the exfoliation of the clay imitating material developed against the 

background of the progressive sagging of a layer of this material over a growing hole in the 

water-resistant system. In experiment No.3, the width of the hole was so small that no 

sagging was visually observed until the end of the experiment. However, this process 
undoubtedly proceeded in the remaining experiments and everywhere was accompanied by 

a smooth downward movement of material imitating sands, but visible subsidence on the 

surface of the model was recorded only in two cases. In all experiments, the sagging of the 

layer consisting of a clay imitating material ended in its through collapse. 

Following this, almost instantly there was a sharp downward movement of the sand 

imitating material. In the majority of cases, it was straight through at once, i.e. it came to 

the surface of the model in the form of a sink and was limited to a well-visible surface 

resembling a vertical parabola with its vertex pointing downward without a lower segment. 

The delay in this process noted in two experiments manifested itself in the form of the 
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initial fall of the model material bounded by the curved arch. However, the intermediate 

cavities formed in this case instantly collapsed, and the process came to the surface. 

In the course of a unique experiment No.1 (Fig. 4), it was possible to see how has 

formed the rupture in the sand imitating material during its fall into the soil hopper 

chamber. Immediately, water squeezed out of the lower chamber when the clay imitating 

material falls into the soil hopper chamber rushed into the rupture. Formed as a result of 

erosion by an ascending water stream, the cavity filled with water had a vertical section in 

the form of a trapezoid facing downward and “leaning” on a through breach in a clay 

imitating material. This cavity was also unstable and disappeared after a few seconds, and 

the process ended with the appearance of a sink. 

At the end of all experiments on the surface of the models, it was possible to observe a 
depression in a rather complex configuration, most often having clearly pronounced central 

and peripheral parts. The first one represents a sink; the second one is a subsidence 

surrounding it (Fig. 5). The sinks had a concave cup-like shape, sometimes complicated by 

subvertical shear deformations. The surface of the zones surrounding them was slightly 

inclined, slightly convex and, as a rule, had numerous cracks. 

 

Fig. 5. Photograph of the model surface taken after the completion of experiment No.1 (d is the width 
of the sink; D is the width of the depression). 

Not all surface manifestations of the modeled processes were quite distinct. In six 

experiments it was impossible to determine the boundaries of the subsidence zone 

surrounding the sink, and in three – of the sink itself. However, it seems to be more 

important that the morphology of these forms fully corresponds to the morphology of large 

sinkholes recorded on the territory of Dzerzhinsk and its suburbs [13]. This clearly 

indicates a satisfactory adequacy of the models. 

4 Discussion 

4.1 Solution of the prognostic task 

An analysis of the modelling results taking into account scale effects allowed proposing a 

conceptual model for the formation of sagging-collapse sinkholes, presented in the form of 

a graphic scheme (Fig. 6). According to this concept, the destruction of the clay layer that 

overlaps the karst cavity can be initiated by one of three factors: 1) expansion of the cavity 

as a result of dissolution of its walls; 2) output of water from soluble rocks; 3) input of 
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water into the soil cover. The last two factors may be of man-made origin. A sagging-

sinkhole formation undergoes two stages in its development. 

 

Fig. 6. First (left picture) and second (right picture) stages of a sagging-collapse sinkhole formation. 

Where: 1, Soluble rocks. 2, Clays. 3, Sands. 4, Level of supra-karst unconfined 

groundwater. 5, Level of karst confined groundwater. A, Karst cavity filled with water 

under pressure. B, Zone of sagging and exfoliation of clays. C, Zone of smooth downward 
movement of sands. D, Subsidence. E, Collapsed clays. F, Zone of liquefaction and 

subsequent sharp downward movement of sands. G, Sinkhole.     

At the first stage (left part of Fig. 6), when the initiating factor begins to act, the 

destruction of the water-resistant layer will take the form of its sagging into the cavity and 

exfoliation of the clays composing it. The sagging will be accompanied by a smooth 

downward movement of overlying sands, which, capturing large ground masses, can, under 

certain conditions, manifest itself on the earth’s surface in the form of an increasing 

subsidence. 

If the impact of the initiating factor continues, the destruction of soil cover will go into 

the second stage. It will come at that critical moment when the clays begin to fall into the 

karst cavity filled with water under pressure (right part of Fig. 6b). At the same time, three 
processes proceed almost simultaneously: the collapse of clays, the displacement of water 

from the cavity, and a sharp downward movement of sands. Their mutual superposition 

leads to the fact that pore pressure sharply rises in saturated sands above the cavity, as a 

result of which they pass to a liquefied state in a certain volume. This quicksand easily 

moves down, fills the karst cavity and ceases to serve as a support for unsaturated sands, 

which are also involved in a sharp downward movement that can reach the earth’s surface 

forming a sink. 

At the time of the collapse of the waterproof layer composing by clays, a dome appears 

on the free surface of the supra-karst groundwater, which disappears after the formation of 

the sinkhole. For this reason, cases of the appearance of water at the bottom of fresh 

sinkholes and its subsequent quick departure were repeatedly observed on the territory of 

Dzerzhinsk, which made it possible for Savarensky [14] to hypothesize the participation of 
sand liqufaction in the formation of sinkholes for the first time. 

The results of the modelling in quantitative terms are presented in Table 2. The 

statistical processing of the obtained digital material was carried out sequentially in three 

areas in order to determine the critical width of the karst cavity (2a0), the diameter of the 

sink (d), and the diameter of the final depression (D). As three dimensionless dependent 

variables, the ratios of these values to two parameters having a dimension of length were 

adopted: M + m and m. The assignment to first dependent variable the dimensionless form 
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R = 2a / (M + m) required a change in the structure of the independent variables Z2 and Z3, 

which, respectively, took the form: Z2 = M / (M + m) and Z3 = H / (M + m). 

Table 2. Digital data of the modelling.  

Parameters 
Experiment numbers 

1 2 3 4 5 6 7 8 9 10 11 

P
ro

p
er

ti
es

 o
f 

cl
ay

 i
m

it
at

in
g
 

m
at

er
ia

l 

Unit weight (γ), N/m3 14.5 14.5 17.3 17.3 14.5 19.8 14.5 16.6 15.6 14.5 14.0 

Cohesion (c), kPa 17 17 10 10 17 23 17 30 37 17 17 

Coefficient of friction (tg φ) 0.54 0.54 0.54 0.54 0.54 0.68 0.54 0.54 0.54 0.54 0.29 

Height of the layer of clay imitating 
material (M), cm 

4 4 2 4 4 4 4 6 4 4 4 

Height of the layer of sand imitating 
material (m), cm 

43 48 36 48 42 46 47 12 48 48 46 

Height of the water column in the side 
chambers, counting from the roof of a 
layer of clay imitating material (h), cm 

23 24 18 24 42 24 24 6 24 0 24 

Pressure of water on the floor of a layer 
of clay imitating material (H), cm of 
water column 

27 28 15 23 8 8 0 12 8 8 8 

Width of the hole in the water-resistant 
system, at which through collapse of 
the layer of clay imitating material 
occurs (2а0), cm 

22 14 6 10 19 19 15 28 22 24 15 

Width of the sink formed on the 
surface of the model (d), cm 

47 ? 22 21 ? 48 40 40 24 45 ? 

Width of the final depression formed 
on the surface of the model (D), cm 

65 ? 35 ? ? 60 49 ? 55 ? ? 

Note: “?” means that sink or final depression on the model’s surface did not have clear 

boundaries. 

To simplify both the statistical processing and the resulting mathematical expressions, 

the following type of pseudo-functions was selected that characterize the desired 

quantitative laws: 

F(R) = k0 + k1f (Z1) f (Z2)… f (Zn)                 (1)  

where R is resulting dimensionless parameter, Z is initial dimensionless parameter, k is 
empirical coefficient, and n is number of initial parameters. 

The acceptability of such a structure of the final pseudo-function was evidenced by the 

high tightness of the obtained correlation dependencies. In all three cases, during statistical 

processing, it was possible to avoid the extremely undesirable inclusion of the dependent 

variable in any function. 

Table 3 contains all dimensionless variables included in the statistical processing. The 

final predictive formulas were as follows: 

2a0 = 0.115 (M + m) + 1.23 tg φ √ cM /γ  exp [H / (M + m)] exp (– h / m)   (2) 

d = 1.48 √ 2a0 m  exp (h / m) – 0.566 m      (3) 

D = (M + m){1.45 – 1.15 tg φ √ ln (m / 2a0)  exp [– ( d / m)2]}    (4) 

where 2а0 is the critical width of the karst cavity, providing a through collapse of the 

clay layer (m), M is its thickness (m), m is thickness of the sands overlapping it (m), φ is 
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friction angle of clays (degrees), c is their cohesion (kPa), γ is their unit weight (kN/m3), H 

is hydraulic head of karst water (m), h is thickness of saturated sand (m), d is diameter of 

the sinkhole (m), and D is diameter of the weakened zone (m). 

Table 3. The results of statistical processing of experimental data.  

Experiment 

numbers 

Independent variables (Z) Dependent 

variables (R) Z1 Z2 Z3 Z4 Z5 

1. Determination of the critical width of karst cavity 
Z1 = h / M ; Z2 = M / (M + m) ; Z3 = H / (M + m) ; Z4 = c / γM ; Z5 = tg φ ; R = 2a0 / (M + m) 

1 0.53 0.085 0.57 29 0.54 0.47 

2 0.50 0.077 0.54 29 0.54 0.27 

3 0.50 0.053 0.39 29 0.54 0.16 

4 0.50 0.077 0.44 14 0.54 0.19 

5 1.00 0.087 0.17 29 0.54 0.41 

6 0.52 0.080 0.16 29 0.68 0.38 

7 0.51 0.078 0 29 0.54 0.29 

8 0.50 0.333 0.67 30 0.54 1.56 

9 0.50 0.077 0.15 59 0.54 0.42 

10 0 0.077 0.15 29 0.54 0.46 

11 0.52 0.080 0.16 30 0.29 0.30 

Approximation function: Y = 0.115 + 1.23 X , where  X = Z2 Z5√Z4 exp Z3 exp (– Z1) , Y = R   
Correlation coefficient: 0.97 

2. Determination of the sinkhole’s diameter 
Z1 = h / m ; Z2 = 2a0 / m ; R = d / m 

1 0.53 0.51 – – – 1.09 

3 0.50 0.17 – – – 0.61 

4 0.50 0.21 – – – 0.44 

6 0.52 0.41 – – – 1.04 

7 0.51 0.32 – – – 0.85 

8 0.50 2.33 – – – 3.33 

9 0.50 0.46 – – – 0.50 

10 0 0.50 – – – 0.94 

Approximation function: Y = – 0.566 + 1.48 X , where  X = √Z2 exp Z1 , Y = R   
Correlation coefficient: 0.95 

3. Determination of weakened zone’s diameter  
Z1 = d / m ; Z2 = 2a0 / m ; Z3 = tg φ ; R = D / (M + m) 

1 1.09 0.51 0.54 – – 1.38 

3 0.61 0.17 0.54 – – 0.92 

6 1.04 0.41 0.68 – – 1.20 

7 0.85 0.32 0.54 – – 0.96 

9 0.50 0.46 0.54 – – 1.06 

Approximation function: Y = 1.145 – 1.15 X , where  X = Z3√ – ln Z2 exp (– Z1
2) , Y = R   

Correlation coefficient: 0.85 

An analysis of formula (3) shows that there must be boundary conditions that exclude 

the emergence of a sharp downward movement of sand to the surface. They are easy to find 

by introducing the zero value of d into formula (3) and solving it as an equation. Conditions 

excluding collapse sink formation will then be expressed by the inequality: 

2a0 ≤ 0.146 m exp (– 2h / m)      (4) 
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4.2 Verification of the forecast 

Nowadays, there are no methods and technical means to determine the size of karst cavities 

in the considered geological conditions. Nevertheless, knowledge of the critical width of 

the cavity at which the through collapse of the overlapping clay layer (2a0) occurs is very 

important. The fact is that the critical width of the cavity characterizes the potential danger 
of sinkhole formation – the larger this value, the more intensively the process of dissolution 

of soluble rocks should occur so that it can lead to the sinkhole formation in a certain period 

of time. Therefore, parameter 2a0 can act as an assessment criterion for the stability of the 

sinkhole-prone territory taking into account time, but only in combination with a certain 

indicator of the rate of the corrosion process. If we consider this parameter on the basis of 

the ideal assumption of a stable expansion rate of karst cavities, then its low values indicate 

a high potential danger of sinkhole formation. 

Formula (2) indicates that the critical width of the karst cavity, which ensures the 

through collapse of the overlapping clay layer (2a0), increases with an increase in its 

thickness (M) and the depth of its floor (M + m). This is fully consistent with the tendency 

for a decrease in the intensity of the sinkhole formation in places of increasing thickness of 
clay layer and immersion of the soluble rock’s roof on the territory of Dzerzhinsk. Such a 

pattern was established by Tolmachev [15] during the mathematical processing of data on 

sinkholes using the apparatus of factor analysis. 

It also follows from formula (2) that 2a0 has a direct dependence on H and an inverse on 

h, i.e. the critical width of the karst cavity decreases (and, accordingly, the danger of the 

formation of a sagging-collapse sinkhole increases) with a decrease in the pressure of karst 

water and when the level of supra-karst waters rises. In global practice, there are cases 

when sinkholes, apparently related to the genetic type under consideration, were triggered 

by a decrease in the pressure of karst waters [16] and by a rise in the level of supra-karst 

waters [17]. 

Good results were obtained by comparing prognostic decisions with information on the 

geological setting and the parameters of two sinkholes, which can be reliably attributed as 
sagging-collapse type. Both collapse sinks have been appeared in the industrial zone of 

Dzerzhinsk. 

The first sinkhole appeared in September 1961 on the territory of a thermal power 

station and had a diameter of 26 m. The diameter of the weakened zone was 42 m. The 

drilling carried out near the sinkhole showed that the thickness of the sand layer is 24.3 m, 

and of the clay layer – 9.9 m. The level of supra-karst waters at that time was at a depth of 

5.7 m, and the piezometric head of karst waters was 28.7 m. Inverse verification 

calculations using formulas (2), (3), and (4) indicate the fact that under these conditions for 

the formation of surface manifestations of such dimensions, it is necessary that the karst 

cavity has a width of 6.4 m at the time of collapse of clays. This result serves as an 

exhaustive explanation of the fact that the only borehole located inside the sinkhole at a 
distance of 4 m from its center, did not situated into the zone of the clay’s collapse. 

According to the calculations, the cohesion of clays should be 27 Pa, their friction angle 

should be 27°, and their unit weight – 20 kN/m3. 

The second sinkhole with a diameter of 30 m, surrounded by a weakened zone with a 

diameter of 50 m, caused the damage to a factory building in July 1992 (Fig. 7). The 

borehole closest to the sinkhole, drilled almost immediately after its formation, allowed 

finding that soluble rocks are covered by clays with thickness 7.0 m, over which there are 

sands of 40.0 m thick. According to measurements of groundwater levels carried out during 

drilling, the depth of the supra-karst waters was 14.0 m in the sinkhole area, and the 

piezometric head of the karst waters was 31.7 m. Verification calculations gave the 

following results: 2a0 = 8.6 m; c = 84 kPa; φ = 26°; γ = 20 kN/m3. As in the first case, the 

calculated values of the strength properties of the clays fall into the real ranges established 
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during site investigations in the industrial zone of the city. The cohesion of clays varies 

from 5 kPa to 105 kPa, the angle of internal friction – from 30° to 24°, respectively, and the 

unit weight – from 20 kN/m3 to 21 kN/m3. 

It worth noting that, according to both verification’s results, the calculated values of the 

critical width of the karst cavity, which ensures through collapse of the clay layer, are 

relatively small and are measured in first meters. Apparently, this is the reason for the well-

known difficulty of finding karst cavities that have not reached the critical size in the 

geological setting under consideration. 

 

Fig. 7. The edge of the sagging-collapse sinkhole and the result of caused by its formation partially 
destruction of an industrial building (Dzerzhinsk, Nizhny Novgorod Region, 1992). 

5 Conclusions 

Sagging-collapse sinkholes have relatively complex mechanism of their formation owing to 

presence of saturated cohesionless soils above the clay layer covering soluble rocks. In-

laboratory simulation modelling of sagging-collapse sinkhole formation showed that it is 

caused by the destructive effect of not only gravitational but also hydrodynamic forces on 

the soil cover that overlaps the karst cavities. 

Experiments were organized as a purposefully planned series. This made it possible not 

only to understand the mechanism of the process under study, but also to develop 
prognostic solutions, the reliability of which is confirmed by their comparison with the 

parameters of real sinkholes related to this genetic type. The modelling results also allowed 

explaining the nature of some phenomena and patterns identified in connection with the 

formation of karst sinkholes in the city of Dzerzhinsk, Nizhny Novgorod Region. 
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