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Abstract. We propose an improved version of the energy method in 
calculating rectangular beams for the stability of a flat bending shape. The 
essence of this variant of the method is to use the principle of the minimum 
total energy instead of the condition for the equality of the potential strain 
energy and the work of external forces. This version of the method makes 
it easy to obtain a numerical-analytical solution for any number of 
members of series. The solution of the problem for a pivotally supported 
beam is presented taking into account the vertical displacement of the load 
relative to the center of gravity. 

1 Introduction  

For the first time, the energy method for calculating the stability of a flat bending shape of 

beams was applied by S.P. Tymoshenko [1]. A variant of the method proposed by 

S.P. Tymoshenko involves determining the critical load from the condition that the work of 

the external forces is equal to the potential energy of the lateral bending and torsion of the 

beam. The potential strain energy is expressed in terms of the twist angle of the beam and 
then the function of the twist angle is found in the form of a trigonometric series. With one 

member of the series, the problem reduces to a linear equation [2]. In the case of n members 

of the series, we will have a nonlinear equation of order n. 

We will propose a variant of the energy method that allows us to obtain a solution for 

any number of members of the series. 

2 Methods  

The calculation method will be demonstrated by the example of a pivotally supported beam 

under the action of a load uniformly distributed along the length (Fig. 1).  
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Fig. 1. Design scheme 

 We introduce the dimensionless coordinate /x l  .  The bending moment in the 

beam is determined by the formula: 
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 We will find the critical load from the condition of minimum total energy U, which is 

defined as: 

,U W A         (2) 

where W is the potential strain energy and A is the external forces work. 

 The values of W and A for a beam with constant stiffness  when a load is applied at the 

center of gravity of the cross section are determined by the formulas [3]: 

2 22

2
0 0

1
( ),

2

l l

z t
d v d

W EI dx GI dx
dxdx

   
        

      (3) 

2

2
0

,

l

y
d v

A M dx
dx

        (4) 

where v is the lateral deflection of the beam, EIz is the flexural rigidity in the plane of least 

rigidity, GIt is the torsional rigidity. 

 The second derivative of deflection is expressed through the twist angle as follows [4]: 
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  Substituting (5) in (4), and then (4) and (3) in (2), we obtain: 
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where 
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 The function of the twist angle is presented in the form of a series:  
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where ai - undetermined coefficients, if - basis functions that must satisfy the boundary 

conditions. 

 For the beam under consideration, the boundary conditions have the form: 

(0) (1) 0.          (8) 

 Functions if  are accepted for these boundary conditions as: 

sinif i  .       (9) 

The minimization of the functional U is performed by the coefficients of the series (7): 
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 Expression (10) will be equivalent to the following matrix expression: 

([ ] [ ]){ } 0,A B X         (11) 

where { }X is the vector of series coefficients, the elements of the matrices [A] and [B] are 

calculated by the formulas: 
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 After substituting (9) into (12) we obtain: 
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 The system (11) has a nonzero solution if its determinant is equal to zero: 

[ ] [ ] 0.A B         (16) 

 The critical load is determined from (11) by the formula: 
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3 Results and Discussion 
 

The table 1 shows the values of the coefficient K obtained by our method for the beam 

under consideration for various numbers of members of the series. The results of the third 

and  fourth approximations differ slightly. 

Table 2. The dependence of the coefficient K on the number of members of the series n. 

n 1 2 3 4 5 

K 28.4624 28.4624 28.3151 28.3150 28.3150 

 In paper [5], by directly integrating the differential stability equation, a value K = 28.3 

is obtained 

 The method also allows you to take into account the vertical displacement a of the load 

relative to the center of gravity of the section. 

 In this case, an additional term A1 appears in the expression for the work of external 

forces, having the form: 
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 Expression (10), taking into account the additional term A1, takes the form: 
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 Using expression (12) leads to the equation: 
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[ ] [ ] [ ] 0.A B С          (20) 

 The method for solving equation (20) is presented in [6]. 

 The coefficients of the matrix [C] are determined by the formulas: 

1

0

.ij i jC f f d         (21) 

 For the basis functions (9), the matrix [C] is equal to half the unit matrix [E]. The 

critical load, as before, is determined by the formula (17).  

 Figure 2 shows the graph of the dependence of the coefficient K on the  parameter. 
The dashed line corresponds to the simplified linear dependence proposed in [6] on the 

basis of solution by the finite difference method: 

28.675  40.317 .K           (22) 

 There is a very good agreement between the results, which indicates their reliability. 

 
 

Fig. 2. The dependence of the coefficient K on the  parameter α 

 

4 Conclusions 
 

The proposed version of the energy method makes it possible to obtain solutions under 

arbitrary boundary conditions and loads. The number of members in a series can be 

unlimited. The energy method is also very effective for beams of variable stiffness. 
Compared to the direct solution of the differential equation, which is used, for example in 

[7-10], in the case of a piecewise linear change in stiffness, there is no need to satisfy the 

boundary conditions at the ends of each section. 
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