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Abstract. The most important link in the forging equipment is a crank 
mechanism. Their significant drawback is the unbalanced inertia forces of 
the moving masses of the crank mechanism, which cause vibration. The 
analysis of the phenomena occurring in the mechanism and the assessment 
of the technological process are based on the theory of chains, which 
allows analytically analyzing the dynamic characteristics of systems with a 

large number of degrees of freedom, based on the analysis of one structural 
element. The study of the process of force interaction inevitably comes 
down to the construction of a mathematical model of mechanisms, the 
formative movement of which leads to its formation. One of the partial 
systems makes an irregular programmed motion, meaning the crank drive 
mechanism. In addition, unwanted vibrations caused by kinematic 
excitation are superimposed on this drive. According to numerous papers 
on this topic, significant dynamic errors arise due to vibration 

accelerations. One of the main tasks in reducing the vibration activity and, 
accordingly, the level of acoustic emission of the process under study is to 
ensure the required law of motion of the instrument. On this basis, the 
study of the stability of formative movements is of particular importance. 
This question is complicated by the fact that in the processing, there is a 
change in the process parameters and, consequently, in the characteristics 
of the friction coupling. The latter circumstance presupposes the evolution 
of the system under study, and therefore the need for process control. 

1 Introduction 

The most important link in the forging equipment is a crank mechanism. Their significant 

drawback is the unbalanced inertia forces of the moving masses of the crank mechanism, 

which cause vibration. The analysis of the phenomena occurring in the mechanism and the 

assessment of the technological process are based on the theory of chains, which allows 

analytical-ly analyzing the dynamic characteristics of systems with a large number of 

degrees of freedom, based on the analysis of one structural element. 

The study of the process of force interaction inevitably comes down to the construction 

of a mathematical model of mechanisms, the formative movement of which leads to its 

formation. One of the partial systems makes an irregular programmed motion, meaning the 

crank drive mechanism. In addition, unwanted vibrations caused by kinematic excitation 
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are superimposed on this drive. According to numerous papers on this topic, especially 

significant dynamic errors arise due to vibration accelerations. 

One of the main tasks in reducing the vibration activity, and, accordingly, the level of 

acoustic emission, of the process under study is to ensure the required law of motion of the 

instrument. On this basis, of particular importance is the study of the stability of formative 

movements. This question is further complicated by the fact that in the process of 

processing there is a change in the process parameters and, consequently, in the 

characteristics of the friction coupling. The latter circumstance presupposes the evolution of 

the system under study, and therefore the need for process control. 

In the study of the dynamics of the elastic elements of machines and mechanisms, as a 

rule, it is assumed that the influence of the devices forcing the oscillations is unilateral, that 
is, there is no reverse effect of the elastic subsystem on the energy source. 

Systems that have a source of energy, the inverse effect on which from the other links of 

the mechanical system cannot be neglected due to its final power, are called systems with 

limited excitation (or non-ideal systems). As practice shows, in some cases, a sharp 

increase in the amplitudes of oscillations of elastic elements of a non-ideal system, which 

arose when the operating mode enters the resonance region, can lead to dangerous modes of 

oscillation. 

2 Materials and methods 

Consider the drive mechanism, which is a serially connected belt drive, and a crank 

mechanism, which implements the kinematic function of the position of the driven link. 
The considered mechanism belongs to the class of devices that convert the rotational 

movement of the drive shaft into an uneven movement of the working body. In this case, 

the dependence of the form  V , connecting the position of the slave link with the 

angle of rotation of the drive motor is nonlinear. It is usually called the position function, 

and its angle derivatives 
 
respectively 

 




d

d
 и 

 
2

2





d

d 

 

called transfer functions. 

Analysis of the kinematic scheme of the mechanism under study allows us to conclude that 

the dynamic can be classified as a nonholonomic system, due to the presence of a belt 
transmission, with scleronomic connections. However, it is necessary to take into account 

the possibility of manifestation of parametric resonances, since the reduced moment of 

inertia of the mechanism is also a function  . It can also be classified as a vibratory 

machine with kinematic excitation. The interaction of the working body with the material 

creates a technological load on the oscillatory system. In this case, the dynamic model of 

the object under study can be represented as figure 1: 
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Fig. 1. The design scheme of the drive. 

Since the links of this mechanism perform complex flat movement in a vertical plane, it 

is necessary to take into account the work of gravity forces. In addition, the mechanism has 

a link that performs a plane-parallel motion. For such links, their inertial characteristics can 

be reduced to links that perform rotational and translational motion, that is, to a crank and 

frame. Using the mass substitution method, we get:                       

2

33
2

R
L

mJ ш         
2

L
mm ш 

.

                            (1) 

The electromechanical system cannot be described by an adequate model without taking 

into account the inertia of the processes occurring in the engine. The equations describing 
the motion of an asynchronous electric motor have the form: 
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where 

 pZ - the number of pole pairs of the electric motor; 

 x1 - the projection of the flux linkage of the stator winding on the axis x ; 

 y1 - the projection of the flux linkage of the stator winding on the axis y ; 

 x2 - the projection of the flux linkage of the stator winding on the axis x ; 

 y2 - the projection of the flux linkage of the stator winding on the axis y ; 

 J - the sum of the moment of inertia of the rotor of the electric motor and the pulley; 

 0 - angular frequency of rotation of the stator field; 

  - angular frequency of rotation of the rotor; 

 p - angular frequency. 

Thus, the electromechanical system under investigation includes an electric motor 

described by a system of nonlinear differential equations of the first order, as well as a 

system of equations describing the mechanical part of the drive. For such problems, a 

special form of the Lagrange type II equations with “superfluous” coordinates is usually 

used (they are also called Ferrers equations). For the case in question, we have: 
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We specify the absolute coordinate corresponding to the displacement at the beginning 

of the kinematic chain, and then enter the coordinates, moving along the kinematic chain. 

We write the basic kinematic relations: 

11 qt 
,       

 

2112112 qiqqi 
,     

 

321132113 qqiqqqi 
,    

 

 
532113

)( qqqiqY  
,    

 

4qYZ      45 qqZ 
.     

 

The angular coordinates of the corresponding sections in absolute motion, - the absolute 

coordinate of the mass. The last remark means that, with the exception of the generalized 

coordinates, relative coordinates are taken which are responsible for the deformation of the 
elastic elements. 
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The equation of connection is written based on the condition that is a function of the 

position. 

    0
33211

 ZZqqiq 
.    

 

We differentiate this expression by time: 

03211  Zqqiq  .                                (4)    

As the "extra" coordinates, we take 5qY  . The number of degrees of freedom of the 

system under study 4H , the number of "extra" coordinates 1n . 

Due to the fact that the frame with moves in the vertical plane of Fig.1.2, it is 

convenient to present its movement in the following form:                             

 sincos  RLS
.      

The common leg of the OAC and ABC rectangles is determined by the equality of the 

form:  

 cossin 
, 

where: 

L

R
 ,    cosarcsin  .     

 

The transfer function of the drive mechanism can be represented as a function of the 
angle of rotation of the crank: 

  22sincos RLRLS   ,  
 

  2222 sincos1 RLRL  
  .         (5)
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Fig. 2. Crank mechanism. 

For the second derivative of the transfer function, respectively, we obtain: 

 








sincos 










d

d

d

d

d

d

,    

 










cossincos

2

2

2











d

d

d

d

,    

 























 









cossin

cos

sin

cos

1
2

2

2

2

d

d

,  

 

  











 sincossin

2

2

2

2

2









  R

d

d
L

d

d
L

d

Sd

,                      (7)

 

  













 sin

cos

sin
coscossin

cos

sin

cos

sin
2

2

2

2 































  RLL

.

 

To compile a mathematical model of the mechanical part of the drive, we express the 

kinetic and potential energy in terms of the accepted generalized coordinates, including the 
“redundant” ones: 
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112 ZmJJJT   
,    

 

  

 
   E3S Web of Conferences 164, 03051 (2020)

TPACEE-2019
 https://doi.org/10.1051/e3sconf /202016403051

6



     23
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System dissipative function (Rayleigh function): 
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The expression for virtual work can be written in the form: 

ZZbqqbZFqMdA
pez
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We write the expression of kinetic energy, taking into account the kinematic relations: 
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Based on the matrix representation of the kinetic energy of the system 

qMnq   TT2  and the fact that the coefficients at generalized speeds are constant, 

the inertial coefficients equating the corresponding coefficients of the quadratic form 

representing the kinetic energy of the system, we obtain the matrix of inertial coefficients in 

the form: 





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2
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Mn                     (8)  

It is necessary to consider the counting of potential energy from the position of stable 

equilibrium. In addition, we believe that all communications are stationary, the process is 

not considered as a component of the mechanism, but as an external influence. If we 

assume that the gear ratio does not depend on the speed of the links, the stiffness matrix of 

the approximating system of differential equations of the object under study can be taken as 
constant. 
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Based on the matrix representation of the potential energy of the system and the fact 

that the stiffnesses of the bonds are constant, the coefficients of the stiffness matrix are 

obtained by equating the corresponding coefficients of the quadratic form representing the 

potential energy of the system, in the form: 
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The coordinate entered into the expression of potential energy, but although it is rigidly 

connected with the coordinate by a nonlinear function, the change in the potential energy of 

the system under study is determined by the movement of inertial masses in the vertical 
plane. 

Imagine the damping function in the matrix form: 
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.
 

Based on the representation of the damping matrix in the form, we obtain the matrix in 

the form: 
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The moments of friction forces in the supports neglected. Further actions are reduced to 

writing a system of differential equations of motion and the elimination of Lagrange 

multipliers. The total number of equations is. In the first part, in addition to the generalized 

forces, there is a summand. Let us write the equations that establish the connection between 

“extra” and independent coordinates. 

Determine the coefficients of the equations of additional relationships: 

   32115 qqiqqY  
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For further discussion, it is convenient to present this equality in the matrix form: 
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  qIs  
3

'

5
q

,      
 

    qIsqIs  
3

'

35
q

.    
 

General view of the equation of communication: 







nH

k

kk aaa
1

01 , where: 5 nH .     

Let us compare the result obtained with the equation of connection in general form. 

Given that the index of the coefficient corresponds to the generalized speed, we write: 

  015544332211  aqaqaqaqaqa  .     

From the last equality follows: 

  13

'

1 ia      3

'

2 a    3

'

3 a
,
     

04 a   15 a .        

The definition of generalized forces is carried out, making the expression of the amount of 

work on virtual displacements: 

   
54541

qqFrezqqmgqMdA  
, 

 

MdQ 1   FrezmgQ 
4

  FrezmgQ 5 .  
 

Finally, the system of equations of the forced motion of the mechanism can be written 

in a matrix form, highlighting the fifth equation, which is intended to determine the 

Lagrange multiplier: 

























































Frezmg

iMd

aFrezmg

a

a

aMd
1

4

3

2

1

CqqHnqMn 

,

 

 Frezmgqmqm 54


,    
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The last equation of the reduced system is used to determine the Lagrange multiplier: 

Frezmgqmqm  54


.    
 

Finally, the system of equations of the power-saw bench drive is obtained in the form of 

matrix equality: 

   tpp ,2
XFqCHnMn 

.     

Write the expression for the given value of the Lagrange multiplier: 

 

 

 

 

 

 

 

 

















































































































0

,

54

54

541212

54

54

541212

qq

qq

qqi

m

Frezmg

Frezmg

Frezmg

FrezmgiMd

Frezmg

Frezmgqmqm

Frezmgqmqm

FrezmgqmqmiMd

Frezmg

iMd

t













qF

 

We will transform the vector defined by the “extra” coordinate, provided that  

    qIsqIs  
3

'

35
q :    

     

   

   









































   

   

   







































































 

 

 





























4

3

2

1

1212

2

12

1212

2

12

1212

2

12

4

3

2

1

1212

2

12

1212

2

12

121212

2

12

3212132121124

3212132121124

32121123212112412

54

54

5412

0000

0

0

0

0000

1

1

00

q

q

q

q

iii

iii

iii

m

q

q

q

q

iii

iii

iiii

m

qqiqqqiqiq

qqiqqqiqiq

qqiqiqqiqiqi

m
qq

qq

qqi

m





























. 

 

  qIhqImqIh 






 


























1212

2

54

54

5412

0

immim
qq

qq

qqi

m
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where:         





















0000

011

011

011

12

12

12

i

i

i

Ih     ,   





















0000

1000

1000

000
12
i

Im

.  

 

Then the system of equations describing the mechanical part of the drive can be 

represented by a matrix equation of the form: 

     QmCqqIhHnqImIhMn   
1212

2
immim

, 

 

 

 










































































Frez

mg

Md
ii

Frezmg

Frezmg

Frezmg

FrezmgiMd

110

0

0

1
121212

Qm

,

 

Or 

































































Frez

mg

Md

Frez

mg

Md
ii

PvCqqHqM

110

0

0

1
1212



,

 








































Frezmg

Md

i

10

0

0

1
12

CqqHqM 

.  

 

Thus, we have obtained a second-order matrix nonlinear differential equation for 

selected generalized coordinates. For further research, it is desirable to have a system of 

differential equations of the first order. To this end, we perform the following 

transformations: we consider matrices as components of block matrices: 











HM

MNulM
R

,

     






 


CNulM

NulMM
K

,

      
 








 


Pv

N
Q

24

,

 











q

q
X



.       

 

The system of differential equations of the first order can be written in the form: 

                uQXKXR    .                                        (11) 
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 Where:  













Frezmg

Md
u

.      

 

We check the transformations made: 

   

 

 
u

Pv

N

q

q

CN

NM

q

q

HM

MN








 







































  24

44

4444 





,

 

The result is: 

uPvqCqHMq  
,     

 

 
 14 NqMqM 

 .     
 

This result means that we have obtained a system of equations describing the behavior 

of the mechanism under study in state variables. 

  








 cossin

cos

sin
cossin'  RLR

d

d
L

,

 

  













 cos

cos

sin
coscos

cos

sin

cos

sin
22

2 































  RLL

.

 

3 Conclusion 

The resulting system of drive equations can then be used to analyze the ratio of the 

spectrum of vibrations excited by the drive, both due to its dynamic properties, and due to 

the substantial nonlinearity of the law of motion of the working body and natural 

frequencies. In addition, it can be used in the analysis of forced movements. 
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