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Abstract. In flood forecasting, general flood forecasting models or empirical forecasts reflect the average 
optimal value or relationship curve under the previous data. However, in the operation forecast, the forecast 
plan value often deviates from the actual situation. This paper takes Muskingum model as an example, and 
uses the Kalman filter algorithm to correct the forecast results. The algorithm structure and principles were 
described detailed, and the numerical simulation test was set to verify the efficiency of the Kalman filter 
algorithm. The correct results with corrected method were compared. The results indicated that the 
efficiency of the updating system using Kalman filter algorithm was improved. Conclusively, the proposed 
method could be widely applied in real-time flood forecast updating.  

1 Introduction  
Watershed hydrological system is a very complex natural 
system. When using the hydrological model for flood 
forecasting, due to various reasons, the actual situation is 
that each forecast has more or less errors (Bogner et.al 
2008). Traditional hydrological forecasting methods are 
difficult to make up for some errors in the actual 
situation. Real-time forecasting is not appropriate for 
such considerations that were not considered in the 
original model, cannot be considered, or even considered, 
and there is a certain amount of flood estimation 
(Madsen, 2005). The factors that cause certain errors in 
the forecast, such as the structure, parameters, state 
variables, or input values of the model, are considered. In 
addition to a reasonable and effective model of river 
basin hydrological forecasting for flood forecasting, a set 
of reasonable and effective real-time correction 
techniques is also needed.  

The research of traditional real-time correction 
technology mainly focuses on the improvement of 
correction methods and correction contents, such as 
Kalman filter technology (Babovic 2001; Komma, 2008; 
Trushnamayee 2019) etc. The improvement of research 
technology has shown obvious results in industrial 
automatic control and national defense cutting-edge 
science. The reason is that the former has a large amount 
of information that can be used, and simple technology 
cannot be fully utilized (Kidanidis, 1980). When the 
structure of the correction technology is complicated and 
the amount of information used is increased, the 
correction effect is improved. The amount of information 
on flood forecast errors is only sufficient to provide 
simple correction technology. Or even the amount of 

information required for simple correction methods is not 
enough. For complex correction techniques, the amount 
of available real-time information has not been increased, 
and the correction effect naturally cannot be improved. 
In the real-time flood forecasting system, there are many 
reasons for the error, and the mechanism that affects the 
error is very complicated. Although the model calculates 
the real-time error series, although it contains all the 
error information, the amount of information that can be 
distinguished is too small to be able to reach the model 
parameters, Input errors, etc. Therefore, the expansion of 
real-time correction information utilization and 
improvement of utilization technology is the key to 
real-time flood forecast correction technology. 

2 Methodology 

2.1 Algorithm of Kalman Filtering 

In the absence of external disturbances, the future state 
of the dynamic system can be determined based on the 
current state using a motion equation that describes the 
dynamic change of the system. Unfortunately, for an 
actual physical system, it is inevitable that there is some 
external interference, or people's description of the 
dynamic changes of the system is not very accurate 
enough. Therefore, the behavior of any actual physical 
system can be considered as consisting of two parts: one 
is predicted from a known equation of motion, and the 
other is a random component whose mean can be 
regarded as zero. Such a system can be regarded as a 
Markov sequence. If the dynamic system is assumed to 
be linear, its system equations and measurement 
equations are: 
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Among them,  k represents the linear state equation 

at time k under the condition of time k-1; Hkis the linear 
observation equation at time k; X and Y are state 
variables and measured variables; dynamic noise Wk and 
measurement noise Vk are A white noise sequence with 
zero mean, and the two are uncorrelated, that is, for all i 
and j: 
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Where ij is the Keronecker function, ie let the initial 

state X0 are a normal random variable, and its statistical 
characteristics are: 
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The recurrence formula of kalman filtering is: 
Filtering： 

1/1//
ˆ(ˆˆˆ

−− −+== kkkkkkkkkk XHYKXXX
)   (4) 

Forecasting： 

kkkkkk UG+=− XΦX ˆˆ
1/            (5)     

Gain matrix： 
1

1/1/ )( −
−− += k

T
kkkk

T
kkkk RHPHHPK

    (6) 
State vector error covariance: 

T
kkk

T
kkkkk ΓQΓΦPΦP += −− 11/        (7) 

Filtering error covariance: 

1/)-( −= kkkkk PHKIP
           (8) 

In addition, the initial filtering value of the recursive 
algorithm generally includes the first and second 
moments of the initial state value: 
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2.2 Kalman Filtering for Muskingum Model 
(KFMM) 

The prerequisite for the application of Kalman filtering is 
that the system must be linear, and river confluence can 
be viewed as a time-varying linear system in hydrology. 
The Muskingum model is the only model that can rely on 
hydrological methods to derive the parameter matrix. 
The mathematical form conforming to the linear system 

equations provides the basis for the application of 
Kalman filtering. Muskingum's matrix solution is as 
follows: 

A long reach is used as the research system, which is 
divided into n sub river sections. For the linear flow 

calculation, the calculation parameters iK
and 𝑥𝑥𝑖𝑖 of 

each sub river section is equal. For the i-th sub-reach, the 
Muskingum equation is: 

1 1 1 1( ) ( )
2 2

[ ( ) (1 ) ]

+ + + + 
− = + + + − +

= + + −

t t t t t t t t
i i i i i i i i

i i i i i i i

t tW W I I q q Q Q

W K x I q x Q (10) 

Where: t is the time sequence number; iI
and iQ

is 

the inflow and outflow of the i-th sub-reach; iq
are the 

interval or branch inflow of the i-th sub-reach; iW
are 

the tank reserves of the sub-reach; iK
and 𝑥𝑥𝑖𝑖  are the 

calculation parameters. 
Solving Equ. (10), get 

1 1 1+ + ++ = + + −t t t t t t
i i i i i i i i i i i ia Q b I c Q d I d q b q

(11) 
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If the section flow on the forecasted river section iI

is merged into iq
, and 4 sub river sections are taken as an 

example, the simplified Muskingum vector matrix 
equation can be obtained by derivation as: 

11
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11
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It can be found that the expression of the Muskingum 
matrix equation is a linear dynamic system: 

1 1+ += +t t tQ Q BU
         (13) 

Where: 

2
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Based on the Muskingum matrix method, the state 

equations and measurement equations of the Kalman 

filter are constructed, and the default initial value 0X
 

and state vector filter error covariance matrix 0P
is 

given. The initial values of Q and R can be obtained 
from the statistical variance of the historical data samples 
of the actual measurement stations. 

3 Synthetic Study and discussion  

3.1 Study basin and data 

The basin considered in following example is the 
Tingxia, located in the southeast of China, with a 
drainage area of 176 km2.The climate is relatively humid 
and belongs to the semi-humid region. From the analysis 
of observed data, 70% of the mean annual rainfall falls 
between March and June, while evaporation is greatest 
between May and September. In this study, 13 years of 
historical data, 1988-2000, including hourly precipitation, 
pan evaporation and discharge, were used for parameter 
calibration while the data between1999 and 2000were 
used for the parameter validation. Hydrological data are 
used for calibration and validation of the hydrological 
model’s parameters, including daily and hourly rainfall 
and runoff and daily evaporation rate. The runoff data 
are calculated based on the change in the water level of 

the reservoirs. The rainfall data are obtained from rain 
gauges near the dams. The daily evaporation data are 
obtained by using daily evaporation pan data from 
evaporation station near the dams. 

3.2 Numerical Results and discussion 

In order to confirm the advantage and evaluation of the 
selected method (KFMM), the performance of the error 
correction flood forecasting system with KFMM is 
compared with that uncorrected. 26 flood events during 
1988-2000 are used in numerical study. The Nash‐
Sutcliffe efficiency (NSE), the relative error of peak flow 
(ΔQm), and the relative error of runoff depth (ΔR) were 
used as evaluation criteria.  

The relative error of runoff depth ：

(%) (( - ) ) 100%cal obs obsR R R R = 
                                     

The relative error of peak flow ：

(%) (( ) ) 100%m mcal mobs mobsQ Q Q Q = − 
                                 

Nash ‐ Sutcliffe Efficiency (NSE):

( ) ( )
=

−
=

−− −−−=
n

1i

2
obsobst

n

1i

2
obstcalt QQ/QQ1NSE

                                   

Where calR
is the calculated runoff depth and obsR

the measured runoff depth; mcalQ
to calculate the flood 

peak flow, mobsQ
is the measured flood peak flow; 

t calQ − is the calculated flow at time t, t obsQ − is the 

measured flow at time t, and obsQ
is the measured 

average flow. The forecast of flood peak and flood 
volume is based on the allowable error of 20% of the 
measured peak and flood volume. 

The detailed results obtained by application of the 
KFMM, compared with uncorrected is displayed in 
Table 1. 

Table 1 Comparison of the Performance for Updating System With and Without KFMM   

Floodcode  
Uncorrected  Corrected with Kalman Filtering 

ΔRu(%) ΔQmu(%) NSEu  ΔRc(%) ΔQmc(%) NSEc  
 /%      

31010623 -17.06 -17.46 0.40 -12.37 -26.27 0.64 

31000709 1.76 2.15 0.66 1.06 3.78 0.75 

31970707 -0.21 -3.05 0.9 -0.21 -4.35 0.93 

31950702 2.30 6.17 0.79 1.47 2.61 0.81 
31950428 7.94 1.69 0.76 5.60 3.30 0.84 

31930703 -12.85 -9.30 0.94 -9.41 -6.70 0.96 

31900623 5.61 -7.67 0.95 4.10 -7.04 0.96 

31900614 -48.93 -0.48 0.67 -36.26 0.29 0.78 

31890701 -7.48 1.40 0.87 -5.40 1.97 0.91 

31890521 -16.75 15.90 0.91 -12.35 10.43 0.95 
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31890412 -4.18 3.12 0.94 -3.12 2.20 0.96 

31880617 12.35 3.93 0.87 8.92 3.01 0.92 
31000913 0.61 -0.96 0.82 0.02 -4.04 0.9 

31000829 -7.13 8.85 0.86 -4.44 -4.23 0.92 

31970816 -2.14 0.10 0.92 -1.35 4.85 0.92 

31940821 14.63 1.03 0.68 9.25 1.89 0.8 

31920922 -4.78 -11.91 0.61 -3.03 -5.18 0.69 
31920830 -0.70 -8.95 0.89 -0.37 -1.27 0.89 
31900908 1.23 -17.06 0.96 0.77 -15.44 0.97 
31900904 -2.18 -5.54 0.91 -1.17 -0.81 0.93 
31900830 0.49 8.08 0.91 0.25 7.05 0.94 
31890912 -18.98 10.40 0.93 -11.86 0.99 0.95 
31890831 2.01 18.91 0.66 1.53 7.05 0.84 
31890818 -17.46 7.86 0.51 -10.74 -10.23 0.79 

31880807 36.99 -14.45 0.71 22.83 -7.30 0.7 

31880729 0.52 -15.81 0.5 0.27 -4.22 0.57 
Notes: ΔRu and ΔRc mean the relative error of runoff depth without and with correction; ΔQmu and 
ΔQmc indicate the relative error of peak flow without and with correction. 

 
Results analysis and discussion: 
1. On the whole, the forecast of hydrological element 

state quantity correction is more accurate than the 
forecast without correction. Relative errors (ΔR and ΔQm) 
have been reduced.In particular, the certainty coefficient 
NSE, which reflects the consistency of the overall 
process of the sub-flood, has been improved after each 
flood. 

2. However, the peak relative error of some floods 
increased after correction. The author made a detailed 
analysis of the Kalman filtering principle and the 
Muskingum matrix solution to draw the following 
conclusions: (1) Kalman filtering is mainly corrected by 
(Equ.4) and Prediction (Equ.5) consists of two major 
steps. The correction is to use the measured section state 
value at this moment to correct the outflow value of the 
upper section, and predict the exit section state value at 
the next moment based on the corrected outflow value; 
(2) The state equation of the Kalman filter constructed by 
the Muskingum matrix solution has input terms and the 
inflow of each interval; (3) Kalman filtering can only 
modify the state quantity that can be expressed in a 
matrix, that is, the section Outflow, it is not possible to 
modify the interval inflow obtained through the sloping 
field convergence calculation, and the existence of 
inflow errors will lead to unsatisfactory Kalman filtering 
prediction. 

4 Summary and Conclusion 
Real-time correction of flood forecast is an important 
link to improve forecast accuracy. The real-time flood 
forecasting correction models also have their own 
advantages and disadvantages. How to combine rich 
practical experience with modern control theory to 
develop a real-time correction model suitable for the 
characteristics of flood forecasting in this area is an 
important issue for forecasters and also improves the 

development direction of flood forecast accuracy.  
Kalman filtering technology, because of its scientific 

design ideas and design institutions, is widely used in 
hydrology. The correction effect of the Kalman filter 
technology has a certain effect in general, especially the 
improvement of the NSE. However, due to the existence 
of interval inflow errors, the correction effect is not 
particularly significant. Therefore, further research is 
needed on the applicability of Kalman filters in real-time 
correction of hydrological models and how to correct 
interval inflows that cannot be expressed by a matrix. 
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ΔQmc indicate the relative error of peak flow without and with correction. 

 
Results analysis and discussion: 
1. On the whole, the forecast of hydrological element 

state quantity correction is more accurate than the 
forecast without correction. Relative errors (ΔR and ΔQm) 
have been reduced.In particular, the certainty coefficient 
NSE, which reflects the consistency of the overall 
process of the sub-flood, has been improved after each 
flood. 

2. However, the peak relative error of some floods 
increased after correction. The author made a detailed 
analysis of the Kalman filtering principle and the 
Muskingum matrix solution to draw the following 
conclusions: (1) Kalman filtering is mainly corrected by 
(Equ.4) and Prediction (Equ.5) consists of two major 
steps. The correction is to use the measured section state 
value at this moment to correct the outflow value of the 
upper section, and predict the exit section state value at 
the next moment based on the corrected outflow value; 
(2) The state equation of the Kalman filter constructed by 
the Muskingum matrix solution has input terms and the 
inflow of each interval; (3) Kalman filtering can only 
modify the state quantity that can be expressed in a 
matrix, that is, the section Outflow, it is not possible to 
modify the interval inflow obtained through the sloping 
field convergence calculation, and the existence of 
inflow errors will lead to unsatisfactory Kalman filtering 
prediction. 

4 Summary and Conclusion 
Real-time correction of flood forecast is an important 
link to improve forecast accuracy. The real-time flood 
forecasting correction models also have their own 
advantages and disadvantages. How to combine rich 
practical experience with modern control theory to 
develop a real-time correction model suitable for the 
characteristics of flood forecasting in this area is an 
important issue for forecasters and also improves the 

development direction of flood forecast accuracy.  
Kalman filtering technology, because of its scientific 

design ideas and design institutions, is widely used in 
hydrology. The correction effect of the Kalman filter 
technology has a certain effect in general, especially the 
improvement of the NSE. However, due to the existence 
of interval inflow errors, the correction effect is not 
particularly significant. Therefore, further research is 
needed on the applicability of Kalman filters in real-time 
correction of hydrological models and how to correct 
interval inflows that cannot be expressed by a matrix. 
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