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Abstract. Previous studies have identified a significant potential in using economic model predictive control 
for space heating. This type of control requires a thermodynamic model of the controlled building that maps 
certain controllable inputs (heat power) and measured disturbances (ambient temperature and solar 
irradiation) to the controlled output variable (room temperature). Occupancy related disturbances, such as 
people heat gains and venting through windows, are often completely ignored or assumed to be fully known 
(measured) in these studies. However, this assumption is usually not fulfilled in practice and the current 
simulation study investigated the consequences thereof. The results indicate that the predictive performance 
(root mean square errors) of a black-box state-space model is not significantly affected by ignoring people 
heat gains. On the other hand, the predictive performance was significantly improved by including window 
opening status as a model input. The performance of black-box models for MPC of space heating could 
therefore benefit from having inputs from sensors that tracks window opening. 

 

1 Introduction  

The Danish Government has committed to meet the EU 
goal of reducing CO2 emissions by 40 % between 1990 
and 2030 [1]. To fulfil this goal, fossil fuels are gradually 
outsourced from the Danish energy production, and 
replaced by renewable energies such as wind power, 
which already accounts for more than a third of the Danish 
electricity production [2]. Energy production from 
renewable energy sources are weather dependent, causing 
a fluctuating energy production and a mismatch in load 
and time between energy production and energy demand. 
Future Danish energy production and distribution requires 
interaction between the electricity grid and the district 
heating grid. Therefore, fluctuating production of 
electricity can also affect future district heating systems 
[3]. This constitutes a higher need for energy storage and 
flexibility in the energy demand of district heating. 

The authors of [4–6] investigated the potential of 
using economic model predictive control (E-MPC) to 
facilitate load shifting of space heating in residential 
buildings. They used price signals and weather forecasts 
to minimize heating costs over a prediction horizon of 24-
72 hours. The buildings were thus preheated when the 
price was low in order to reduce the heat demand when 
the price was high. This led to reduced energy costs and 
CO2 emissions and reduced critical peaks in the energy 
system. 

A crucial and difficult part of implementing an MPC 
is to acquire a good mathematical model to represent the 
thermodynamic behaviour of the building. Most studies 
on E-MPC and system identification of buildings assume 
fully known (measured) disturbances related to 

occupancy behaviour or none at all [5–8]. However, this 
assumption is rarely met in practice and the current study 
examines the consequences thereof in terms of the 
predictive performance of a black-box building model. 
More specifically, the influence of unmeasured people 
heat gains and venting was investigated. 

2 Method 

The current study was based on a co-simulation of an 
EnergyPlus (EP) case building (Section 2.1) and a 
MATLAB script for generating venting schedules. The 
co-simulation was facilitated by the program BCVTB and 
was used to generate datasets (D1-D3) with different 
levels of occupancy related disturbances: 

D1:  Data from a single simulation with no occupancy. 

D2:  A set of data from 50 simulations with different 
people heat gains schedules (Section 2.2). 

D3:  A set of data from 50 simulations with different 
people heat gains and venting schedules (Section 
2.3). 

These datasets were then used to build black-box 
models (Section 2.4) and examine the extent to which the 
predictive performance was influenced by not knowing 
the people heat gains and venting schedules. 
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2.1 EnergyPlus building model  

A one bedroom terraced house was modelled as a single 
thermal zone in EnergyPlus with the geometry illustrated 
in Fig. 1 and constructions in Table 1. The infiltration rate 
was 0.3 l/s per m2. A radiator heat system with a maximum 
heat capacity of 4 kW was controlled by a PI-controller 
which tracked the indoor air temperature set point. All 
simulations were performed for the period 18 February to 
28 March with the EP weather data file for Copenhagen, 
Denmark [9]. 

People heat gains corresponded to two adults (when 
present) with a constant activity level of 100 W/person. 
Section 2.2 describes how different schedules for people 
heat gains were generated based on a calculation of the 
probability of occupancy. Venting was assumed to only 
happen during occupancy through the west-facing 
window. It was modelled in EP using the 
ZoneVentilation:WindandStackOpenArea object. The air 
flow rate was a function of wind speed and thermal stack 
effect. There were no temperature restrictions but 
whenever the wind speed exceeded 8 m/s the window was 

closed (if open). Fig. 2 shows that the venting model 
works as intended. Section 2.3 describes how different 
venting schedules were generated based on a calculation 
of the probability of window operation. 

 

 
Fig. 1 EP building geometry. Top: South façade. Bottom: West 
façade. 
 

Table 1. Construction properties. Materials are listed with outside layer first 

Construction type Boundary 
condition 

Material Thickness 
[mm] 

Capacity 
[kJ/( m3K)] 

Resistance 
[m2 K/W] 

Wood façade 
(South) 

Outside Wood 
Air gap 
Insulation  
Concrete 

21 
50 

195 
100 

1120 
- 

31 
2400 

- 
0.09 

- 
- 

Brick façade  
(North/West) 

Outside Brick 
Air gap 
Insulation  
Concrete 

108 
21 

220 
120 

1800 
- 
�� 

2400�

- 
0.18 

- 
- 

Roof Outside Roof covering 
Wood 
Air gap 
Insulation  
Gypsum 

- 
25 
70 

290 
26 

- 
720 

- 
31 

900 

- 
- 

0.08 
- 
- 

Floor Ground Insulation 
Concrete 
Insulation 
Wood boards 

300 
100 
78 
22 

19 
2400 

31 
203 

- 
- 
- 
- 

Interior wall 
(East) 

Adiabatic Concrete 
Insulation  
Concrete 

100 
70 

100 

2400 
19 

2400 

- 
- 

 
Fig. 2 Simulation example, showing venting only happens during occupation, and not at wind speed above 8 m/s.  Occupant state: 0= 
not present, 1 = present.
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2.2 Occupancy schedules 

Several studies have proposed models for stochastic 
occupancy of residential buildings [10–12]. The authors 
of [10] extracted occupancy patterns from CO2 
measurements in a range of Danish multi-family social 
housing buildings. Based on these occupancy patterns, a 
time-dependent Markov-Chain was used to generate 
transition probabilities for entering and leaving the 
building, as it was done in [13]. A time-dependent 
Markov chain calculates the transition probability of the 
current time step based on occupancy state of the previous 
time step. The transition probabilities are described as 
follows: 

������ � �	
� � �

��� � �� � �������������������  (1) 

Where i and j are the possible occupancy states 
(present/not present), X is the occupancy state, Pij is the 
transition probability from state i to j, nii is the count of no 
transitions, nij is the count of transitions from state i to j 
and k is the time index. Since occupancy patterns are 
different for workdays (Mon-Fri) and weekends (Sat-
Sun), transition probabilities were calculated for 24 hours 
in workdays and weekends separately. Transition 
probabilities were generated each hour, i.e. occupancy 
state (present/not present) could only change once at the 
beginning of each hour.  

The occupancy profiles applied in this study were 
generated by comparing the transition probability to a 
random number between 0 and 1 drawn from a uniform 
distribution. If the random number was higher than the 

transition probability associated with the current hour, the 
occupancy state would change. Fig. 3 shows a week with 
two different occupancy profiles generated from these 
probability functions. 

2.3 Window opening schedules 

Different models have been developed to describe 
stochastic window opening behaviour [14–16], but this  
study used the logistic probability functions in [14]: 

��� � �� � �� � � �  !"# $ � �% ���	&�� �  !�'#(��  !) ����*	+, � ��** (2) 

��� � �� � �� � � �  !�)(- �  ! "./- �  !� 0./�** (3) 

Where p is the probability of opening (2) or closing (3) a 
window, ci is indoor level of carbon dioxide [ppm], Ti is 
indoor air temperature [°C], +1 is global irradiation 
[W/m2], Ta is outdoor air temperature [°C],  RHa is 
outdoor relative humidity [%], RHi is indoor relative 
humidity [%] and � is a factor that depends on time of day 
and season. Each simulated time step, BCVTB directed 
inputs from EP to a MATLAB script, which calculated the 
probability of window opening/closing and determined 
the window state in the same way as the occupancy state. 
The window state was then returned to EP through 
BCVTB. Fig. 4 shows two window opening schedules 
generated for the same week using these formulas. The 
average time of window opening for dataset D3 is 42.6 
minutes with a standard deviation of 44.5 minutes. 
 

 

 

Fig. 3 Two occupancy schedules generated from the probabilities of entering and leaving the buildings. 

 

 

Fig. 4 Two window opening schedules generated from the probabilities of opening and closing window. 
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2.4 Black-box models 

A discrete second order state space model in innovation 
form was investigated in this study: 2��� � 32��� � 45��� � 67��� (4) 8��� � 92��� (5) 

Where k is the time index, A, B, C and K are system 
matrices, x is the state vector, e is the error (or 
innovation), u is the input vector and y is the output 
vector. In this study y was the indoor air temperature Ti 
[°C]. The unknown system matrices were estimated from 
the EP data using a subspace identification method 
(N4SID) in MATLAB and refined using prediction error 
minimization (PEM) as is also done in [8]. 

In order to get good training and cross-validation data 
a Pseudo Random Binary Sequence (PRBS) was used to 
generate a temperature set point that varied between 20 
and 24 °C and was used by the PI controller in EP. The 
data from the simulation period was divided into a 
training period of 15.9 days and a validation period of 
10.6 days that were used to cross-validate the models [17]. 
Fig. 3 shows the training data. 

Table 2 lists different scenarios (S1-S7) that was 
investigated in this study along with the corresponding 
dataset (D1-D3). The difference between scenarios are the 
level of occupancy related disturbances that were 
included in the EP model and the black-box models, 
respectively.  

Table 2. Datasets (D1-D3, Scenarios (S1-S7) and included 
occupancy related disturbances. Y=Yes, N=No. 

D
at

as
et

 

S
ce

na
ri

o EnergyPlus Black-box 

People  
heat gain 

Venting 
People  

heat gain 
Venting 

D1 S1 N N N N 

D2 
S2 

Y N 
N  N 

S3 Y N 

D3 

S4 

Y Y 

N N 
S5 Y N 
S6 N Y 
S7 Y Y 

In S1 there were no occupancy related disturbances in the 
EP model and the corresponding data (D1). This data was 
used to train a single black-box model with the following 
input vector: 

5��� � :(-���+1���+;���< (6) 

Where Ta is outdoor air temperature [°C], �s is global 
solar irradiation [W/m2] and �r is space heating [W]. 
In S2-S3, people heat gains was included in the EP model 
and hence the corresponding dataset D2 with 50 
simulations using different people heat gains schedules. 
In S2, a black-box model structure without people heat 
gains was used (6), but in S3 the people heat gains �p [W] 
were added to the third entry of the input vector as 
follows: 

5��� � : (-���+1���+;��� � +=���< (7) 

In S4-S7, both people heat gains and venting were 
included in the EP simulation and hence the 
corresponding dataset D3 with 50 simulations using 
different people heat gains and venting schedules. In S4, 
the black-box model did not include any of these in the 
input vector (3). In S5, the input vector included people 
heat gains (4). In S6, the input vector did not include any 
people heat gains, but it included an additional binary 
input w with the window opening status (0 for closed and 
1 for open): 

5��� � >(-���+1���+;���?��� @ (8) 

In S7 the black-box model applied an input vector that 
included both people heat gains and window opening 
status: 

5��� � ABB
C (-���+1���+;��� � +=���?��� DEE

F
 (9) 

 
Fig. 5 Training data from dataset D1. 
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Fig. 6 Comparison of one set of EnergyPlus (EP) validation data from dataset D3 with scenario 5 (S5) and 7 (S7) black-box model 
output using 24-hour ahead prediction. 

 

Fig. 7 Model fit in mean Root Mean Square Error (RMSE) with standard deviation for each scenario, see Table 1 for details on 
scenarios. 

3 Results 

In each scenario, 50 different black-box models were 
estimated from the 50 different sets of training data except 
S1 where just a single model were estimated. Each of 
these models were cross-validated on the 50 different sets 
of validation data for the given scenario (i.e. 2500 cross-
validations for each scenario). The performance was then 
evaluated in terms of the root mean square error (RMSE):  

.GHI � J�KL 	MN��� � M����OK�P�   (10)

Where MN��� is the predicted room air temperature and M��� is the actual temperature in time step k. N is the total 
number of data points. In this paper, the RMSE for 24-
hour ahead predictions are reported because this is of 
interest for many E-MPC applications.  

Fig. 6 shows one set of validation data from D3 and 
the black-box models of S5 and S7’s ability to predict the 
indoor temperature 24 hours ahead. It can be seen that the 
S7 black-box model generally performs better than S5. 
Between the 23/3 and the 24/3 venting occurs, and the EP 
temperature drops; here it is clearly seen how black-box 
model S7 predicts the drop due to the venting input, 
whereas black-box model S5 overestimates the 
temperature significantly.  

Fig. 7 depicts the mean and standard deviation of the 
RMSE for each scenario. S1 without any occupancy 
related disturbances in EP had a RMSE of 0.74 °C and can 
be regarded as a baseline. S2 and S3 had very similar 
mean RMSE of 0.76 and 0.73 °C, respectively. This 
indicates that it has little effect to include people heat 
gains in the black-box model even though it was present 
in the EP model. S4 and S5 had significantly higher 
RMSE of 1.58 and 1.60 °C, respectively, which indicates 
that the performance of the black-box models decrease 
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when venting is included in the EP model and omitted 
from the black-box model. In S6 and S7, venting was also 
included in the state-space model, which significantly 
reduced the RMSE to 0.84 and 0.85 °C, respectively, 
which indicates that including the window opening status 
in the black-box model significantly improve the model 
performance. Notice the relatively high standard 
deviations in S4-S5 showing that unknown venting leads 
to great variations in model performance. 

The results thus indicates that it makes no significant 
difference to the predictive performance of the black-box 
model whether or not people heat loads were included as 
an input. Contrary, the performance was significantly 
improved when window status was included. In practice, 
this imply that installing window opening sensors could 
provide valuable information when training a model for 
MPC. 

4 Discussion 

There are certain limitations in this study which call for 
further study. A future study should be carried out with 
different occupancy schedules and with higher loads from 
both occupancy and occupancy related equipment such as 
computers and television etc. Furthermore, the simulation 
was performed for an intermediate period with a heat 
demand as well as a high probability of venting. However, 
the influence of venting might be lower in colder months 
during the heating season due to lower probability of 
venting because of less solar heat gains and lower outdoor 
temperatures. Finally, this study focused solely on black-
box models, thus leaving a similar analysis including 
physics-based grey-box models as a topic of future 
research. 

5 Conclusion 

This study investigated the extent to which a black-box 
model of building thermal dynamics is influenced by 
including people heat loads and/or window opening status 
as input. The results indicate, that including people heat 
loads has a small effect while window opening status had 
a significant effect on the RMSE. These models could 
therefore benefit from having inputs from window 
sensors. 
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