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Abstract. The current experimental determination of hygric properties of porous building materials are
demanding in time and effort, merge ad- and desorption techniques, fuses static and dynamic methods, and
finally do not yield complete nor robust results. Therefore, numerical pore-scale-based prediction of the
hygric properties of building materials is on the rise as an alternative. For building materials, this is mostly
based on pore network modelling (PNM), given that these are more efficient compared to lattice Boltzmann
or particle hydrodynamic methods. Pore network modelling however requires data of the complete pore
network for the building material. With the currently available characterization and visualization techniques,
this cannot be readily obtained, as the pore sizes in building materials often span several spatial scales. The
aim of this paper is to present a scale invariant stochastic generation. To realize this objective, distributions
of direct parameters (pores’ sizes, shapes, positions, connections, ...) as well as indirect parameters (overall
pore size distribution and open porosity value) are derived from the input data obtained by micro-CT and
FIB-SEM and subsequently applied to generate a complete pore network of the porous building material.
The quality of the generated PNMs is assessed by comparing them to the original PNMs.

1 Introduction

Flow and transport phenomena in porous media play a
significant role in various fields of science and
technology, comprising a spectrum from medical
sciences over material sciences to soil and rock sciences.
In order to determine the moisture behavior of building
components, numerical simulation models are commonly
used. However, these models require a good description
of the moisture retention and moisture permeability
functions, as these are crucial input parameters. The
experimental characterization of these hygric properties
is impaired by serious weaknesses [1]. The procedure
merges ad- and desorption as well as static and dynamic
methods, thus ignoring hysteresis, air entrapment and
dynamic effects. The measured outcomes additionally
remain incomplete, as they do not provide much
information in the mid-saturation ranges. Moreover, it
necessitates weeks of experiments, and of course,
requires to have the actual material at hand. This
multifactorial group of flaws implies that hygric analysis
of existing materials is cumbersome and time intensive.
In order to overcome these deficiencies, a new
approach is currently being introduced in building
physics. Pore network models (PNMs) have already
proven to be useful to determine fluid flow properties in
other research fields, such as geological applications [2],
fuel cells [3] and drying technology [4], to determine
fluid flow properties. PNMs try to represent the studied
pore structure as accurately as possible while retaining a
certain simplicity by representing the pore space as a
network of pore bodies and pore throats. Hence, the
PNM tries to capture local features of the pore-space
which are important for the fluid storage and transport
processes under investigation. Subsequently these PNMs
are subjected to invasion algorithms that mimic different
(de)saturation routes: absorption, desorption, imbibition
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and drying. Once the moisture distribution at a certain
capillary pressure has been determined, a small gradient
in capillary pressure is imposed for a flow quantification.
For unsaturated moisture storage and transport in porous
building materials, Islahuddin and Janssen [5] have
developed a hygric pore-scale simulator comprising the
coexisting liquid and vapour phases of water, enabling
numerical simulation of hygric properties.

Unfortunately, building materials often have a very
wide spectrum of pore sizes, ranging from nanometers to
millimeters. The presence of multiple pore scales in the
studied sample can severely influence its storage and
transport properties [6]. Therefore, the applied PNMs
need to incorporate information over these different
length scales. PNMs have the advantage that they are
inherently scale-invariant, i.e. this technique can be
applied to any length interval for which the pore
structure has been experimentally observed and
analyzed. In the past maximum balls algorithms have
succeeded to cross different length scales [7,8]. In this
method the largest inscribed spheres (maximal ball) that
touch matrix surfaces are searched. The maximal balls
fill the entire void space measuring the local apertures in
pore central spaces and irregular corners. To define the
topology, maximal balls are merged into -clusters.
Locally, the largest ball will identify the pore body,
while the smallest balls, which belong to more than one
family, are used to define the pore throats.

Hence, PNMs have the potential to resolve the
problems related to simulate fluid flow in complex pore
structures, such as building materials. This paper
focusses on the generation of two datasets depicting the
pore space of brick at two different spatial scales: one
with micro- and one with nanometer resolutions. Further
research is however necessary to arrive at a PNM
incorporating information over the several length scales
of the pore structure. For both scales PNM’s are derived
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from a 3D image and stochastically generated based on
this information. In the first part of the paper the focus is
placed on the generation of these datasets. In the results
and discussion section the stochastic generation
algorithm is explained as well as the pitfalls related to it.

2 Materials and imaging techniques

Ceramic bricks used in masonry constructions are an
excellent example of a building material with a multi-
scale pore network. In this study 4 mm diameter samples
are drilled out of a Vandersanden Robusta brick. These
bricks have a density of 1818 kg/m? and a total open
porosity of 32.6% [9].

In Figure 1A the pore size distribution obtained
using mercury intrusion is depicted. Pore sizes range
from pm to nm scale. The histogram shows a continuous
distribution of pore sizes, which makes it difficult to use
different techniques independently. Currently only
indirect imaging techniques such as MIP or NMR can
cover such a broad range of pore sizes. It is however not
straightforward to define a PNM for this material based
on the data provided by these techniques. In order to
obtain 3D images of the entire spatial range two imaging
techniques are used in this study: micro-CT for the
micrometer scale and FIB-SEM for the nanometer scale.
Based on this curve an open micrometer scale porosity
of around 15 % and open nanometer porosity of 17 % is
assumed. The micrometer scale porosity contains pores
with a diameter above 3 pm, while for the nanometer
scale porosity the smallest visible pores have a diameter
of 30 nm.

To capture the larger pores, micro-CT has proven
to be an excellent tool. It allows to visualize the internal
structure of objects in a non-destructive way. Hence, the
heterogeneity of sample components as well as the
porosity network may be characterized in a qualitative
way down to a resolution of 1 um [10]. It is important to
notice that although the spatial resolution is 1pum, pore
characteristics such as volume, radius and shape can
only be accurately described if the pore radius is bigger
then 5 times the spatial resolution. Hence the smallest
pores captured in this dataset have a radius of 5 pm.

The images used in this study are taken by a GE
nanotom scanner with the following parameters: 80 kV
and 160 pA and a spatial resolution of 1.2 um (Figure
1B). The larger pores have a heterogenous spatial
distribution in the sample and are connected by smaller
pores. However, although these smaller pores are clearly
visible in the slice in Figure 1B the resolution is not
sufficient enough to accurately describe them. The pore
space in these slices is segmented using a dual-
threslholding creating a binary image dataset [10]. Using
an image labeling operation, the visible open porosity
can be selected.

To image the lower end of the pore size range,
scanning electron microscopy (SEM) has proven to be a
useful and established technique for extracting 2D
images of the microstructure of building materials such
as concrete and stone. However it does not provide
information about the third spatial component.

The combination of Focused Ion Beam (FIB) and SEM
resulting in FIB-SEM enables this technique to give 3D
information. It is important to note that, contrary to CT
based imaging methods FIB-SEM is destructive [11].
The images are taken on a Helios Nanolab 660/G
system. To obtain the best quality of images the “through
the lens” detector is used in backscattered-electron mode
(BSE). In this mode the electrons are generated due to
elastic collisions with the atoms of the sample which
causes a change in their trajectory (the billiard ball
model). Because building materials are non-conductive
materials charging and drift pose huge threats during
imaging. Although the generation region of BSE mode is
larger than that of secondary electrons resulting in a
poorer spatial resolution, they are less influenced by
charge up and specimen irregularities due to their larger
energy.

To perform the serial sectional procedure, the
sample is placed at the eucentric height, so that the
imaging plane (x-y-directions) can be scanned with the
electron beam under an angle of 52¢ without changing
sample position (Figure 1C). During the acquisition of
the image stack, the imaging plane is moving step by
step in z-direction due to the sequential ion-milling.

The aim of serial sectioning is to produce a regular
stack of images, which can directly be transformed into a
voxel-based data volume. For this purpose, the thickness
of eroded layers should have similar dimensions to the
pixel resolution in the imaging plane (i.e., 10 nm).
Therefore, the stepwise erosion should be repeated with
high precision at a constant z-step size. Because the
acquisition of hundreds of images lasts for 20 hours or
even longer, drift can become significant. Without
correction, the drift in z-direction causes distortions in
the reconstructed 3D-microstructure. In contrast, drift
components in x- and y-directions are automatically
compensated during the off-line data processing with
image alignment (Figure 1D).

Pore network models are used since the late 1950’s
to represent the complex pore space of the studied
sample by constructing a network of pore bodies and
throats with idealized geometries. The network
extraction process typically comprises two parts:
splitting up the pore space representation into discrete
elements and subsequently measuring the geometric
properties of each network element that will be used in
the modeling. Usually, these include the inscribed radius,
the length, the volume and some sort of shape-describing
parameter for each network element.

In order to transform the image data into special
and topological property lists the maximum ball method
is applied [7].
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The stochastically generated networks recreate the pore
space of the studied material based on input data such as
distributions of pore size, throat size and connectivity.
The generated networks can be arbitrarily large and are
0.15 therefore not limited by the size of the original image or
network. They also have the potential to be able to
01 combine different networks of different scales.
’ FIB-SEM |.1-CT In the past several workflows have been suggested
to generate such network models. They typically
0.0 progressively build on each other, as they all have the
same fundamental structure but each research group tried
0 10 9 8 7 6 y 1 3 to incorporate an additional level of complexity to
B I |6g(pdre régius) (lo.g(m).)2 improve the overall simulations. loannidis et al. [12]
extracted pore and throat size distributions and pore
connectivity information from binary images of thin-
sections. Starting with regular cubic lattices, they
removed nodes and bonds in order to match the desired
average coordination numbers corresponding to the
simulated porous media. Cubic pores and rectangular
throats were then distributed on the remaining nodes and
bonds. Subsequently, Arns et al. [13] offered a better
method of generating networks, by matching the
coordination number distribution instead of just the
average coordination number. Finally, Idowu et al. [14]
developed tools to preserve the morphological properties
of the network. Hence, they no longer require a cubic
lattice, by assessing the following three observations: the
minimum and maximum distances between two pores
are decided by the user, each throat radius should be
smaller than the pores it connects and two adjacent pores
cannot overlap. They also allowed to incorporate a first
degree of correlation between the building blocks of the
network by letting the pore size determine the throat
sizes that are connected to them.

In our approach all fundamental information about
the pore network such as the inscribed radius, volume
and shape factor of pore bodies and throats as well as the
coordination number of the pore bodies, is gathered and
a statistical distribution is fitted on each of these
parameters.  Copulas, functions  that  describe
dependencies among variables, are used to this goal, as
they provide a way to create distributions for correlated
multivariate data. Using a copula, a multivariate
distribution can be defined by specifying marginal
univariate distributions and choosing a particular copula
to define a correlation structure between the
distributions. Bivariate distributions, as well as
distributions in higher dimensions, are possible. Because
of their flexibility these functions have become popular
for data analysis in recent years.

The entire simulation algorithm can be described by
the following steps:

1) Assign the desired dimensions to the random
network. Place an equivalent number of pores
as the original material within this volume.

Fig. 1. A) Pore size distribution of the Vandersande brick Deliberately the number of pores is used and

obtained by MIP; B) Example of a micro-CT slice; C) not the porosity parameter as this allows to use

schematic overview of the FIB-SEM setup. D) Example of a the overall porosity as a quality control of the
FIB-SEM slice. model
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2) Generate the appropriate number of mass
centers used to define the pore bodies. By using
a Sobol set of coordinates a more uniform
distribution in the entire simulated volume is
obtained, resulting in a more accurate volume
distribution fit (Figure 2A).

3) Check if the minimum and maximum distances
defined by the user are respected.

4) Assign a correlated set of geometrical
information and coordination number to each
pore (Figure 2B). Check if any overlap of pore
volumes occurs.

5) Define connections between pores by starting
with the largest one and connect it with the i
nearest pores, with i equal to the coordination
number. For each of the connecting pores, the
remaining number of connections is decreased
by one.

6) To each connection a weight is assigned based
on the radius of the two pore bodies it connects.
The smallest throat radius along with other
correlated geometrical information is assigned
to the branch with the smallest weight.

7) Generate an equivalent number of inlet and
outlet connections comparable to the original
sample. The properties of these throats are also
fitted on the original in and outlet data.

4 Results and discussion

The micro-CT and FIB-SEM images are segmented and
the pore space is transformed into a PNM using the
maximal ball approach developed by Blunt et al. [8]. As
explained in section 2 due to technical aspects and
resolution of both imaging techniques different volumes
with different resolutions are captured. In this study 1
micrometer scale volume of 750 x 750 x 750 voxels with
a resolution of 1.2 um is analysed as well as three
nanometer scale volumes (500 x 500 x 500) with a
resolution of 10 nm. This approach allows to assess if
substantial differences in pore topology and properties
exist between the two scales. Because at the nanometer
scale the selected volumes are smaller, the selection of
three volumes allows to compare the obtained results and
to assess the influence of the representative elementary
volume. Of the three sub-volumes, volumes 1 and 2 have
open porosity values close to the expected value of 17
%, respectively 17.83 and 18.58 %. Volume 3 is situated
in a more porous area and has an open porosity of
43.62%. In these datasets the following independent
parameters are present for pore bodies: volume,
inscribed radius and shape factor as well as the number
of connections with neighbouring pores (coordination
number (CN)). For the throats, the volume, radius and
shape factor are calculated as well as each throat length.
The histogram of throat radii as well as their fitted
distributions are shown in Figure 3A. The coordination
numbers are fitted with the following discrete
distributions: Binomial, Geometric and Poisson. The
other parameters are fitted with continuous distributions
such as: Normal, Exponential, Gamma, Logistic,

Rayleigh, Beta, Lognormal and Weibull. Additionally,
the distributions are truncated between the minimum and
maximum value of the original parameter. The algorithm
uses a Log-likelihood criterium to determine the best fit.
This makes it possible that the same parameter is fitted
by different distributions at different scales. E.g. the pore
body volumes of the CT dataset are fitted using a beta
distribution while for microscopic datasets 2 and 3 a
lognormal and Weibull distribution are used. Applying
different distributions has indicated that the overall
stochastic generation is very sensitive to the chosen
distributions.

A
) andom ) Sobo!
B
Volume
Radius
Coordination number
=
o

Radius Volume

Fig. 2. A) Difference between random generated pore locations
and locations generated based on a Sobol set; B) Illustration of
a simulated correlated set of geometrical information of a PNM
using Copulas.
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In Table 1 the correlation values for each of these
parameters at the micrometer scale are gathered. As
expected pore volume and radius have the highest
positive correlation. In case of the throats, this
correlation is significantly lower. This can be explained
by the fact that the length of the throats plays a more
important role in the total volume. At the nanometer

. . 5
scale the correlation values of the input data follow the . 5
. Throat Radius [m <107
same trends as at the micrometer scale (Table 2). B ' Ius [m] 10
However because the fitting of the data with statistical
distributions is more sensitive to small changes in their
respective defining parameters, the simulated correlation
matrices deviate more compared to the micrometer scale.
Table 1. Correlation values at the micrometer scale level of the
PNM parameters.
Pore body Volume | Radius CN Shape C -
Factor - -
Volume 1 0.59 035 -0.11 8 input data
£ = output data
Radius 0.59 1 05 034 = E
£ %40°
CN 0.35 0.5 1 -0.45 ’8’ °
Shape factor | -0.11 | -034 | -045 ] g
Pore throat © 10%
Volume I 032 7 0.01 10°
0 ) ) D Pore radius [m]
Radius 0.32 1 / 0.003 1000 1
Pore volume orig
Shape factor 0.01 0.003 / 1 BPore volume sim
. 500
Table 2. Correlation values at the nanometer scale level of the
PNM parameters of the input data and correlation values of the
stochastically generated data 0 -
0 2 4 6 8
3 -14
Pore body | Volume | Radius CN Shape E Volume [m7] x10
Factor
Volume 1 0.67 0.76 -0.34 o9
Radius 067 1 0381 058 )
CN 0.76 0.81 1 -0.56 5
- |
Shape factor -0.34 -0.58 -0.56 1 o
Volume 1 0.48 0.56 -0.15 - - - =
Radius 048 1 0.76 0.5 F Pore Voume 7}
CN 0.56 0.76 1 -0.51 st
Shape factor -0.15 -0.5 -0.51 1

Fig. 3. A) Example of the throat radius distribution at the
microscopic scale and the lognormal distribution fit; B)

Histogram of the porosity values of 30 simulation of

microscopic sample 3; C) Correlation between the simulated
radii of pores and connecting throats at the micrometer scale;
D) Histogram of the pore body volumes at the micrometer
scale; E) Cumulative distribution of the pore body volumes at
the microscopic scale; F) Correlation between the simulated
radii of pores and connecting throats at the nanometer scale; G)
Cumulative distribution of throat lengths at the nanometer

scale.

Pore radwus [m]
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In each simulation, 30 PNMs were generated based

on these input parameters. Out of this group of PNMs
the simulation with a porosity value close to the average
porosity value of all simulations was chosen as
representative. In Figure 3B the porosities of the 30
realisations of micro volume 3 are shown and a network
with a porosity value of 34.3% is chosen.
In Figure 3C the connecting throat radii are plotted
against the pore body radius at the micrometer scale. The
precondition that the throat radius has to be smaller than
the pore radius is clearly respected. The tail of the pore
radii distributions is clearly different between the input
and output data. However the effect on the overall hygric
properties is minimal as shown by the black curves in
Figure 4.

For the pore volume distributions a better fit
between input and output data is obtained (Figure 3D).
This is because a simulation with a similar overall open
micrometer scale porosity of 15 % is selected. In case of
the nanometer scale volumes an accurate stochastical
fitting is much harder as explained above. As expected
this influences the pore volume distributions. Further
research is required to identify if this is caused by
resolution problems or can be influenced by the original
pore network extraction.

Figure 3 F&G allow to assess the quality of the
generated connections. Subfigure F indicates a good
match between the pore radii and the connecting pore
radii. Additionally, the distribution of the length of the
throats also matches relatively well with the original
input data. Moreover, in the graph all 30 distributions are
plotted indicating a stable distribution of throat lengths
over all simulations.

Finally, all simulated volumes with different
porosity values are subjected to invasion algorithms as
developed by Islahuddin and Janssen [5]. The moisture
storage and transport property curves are calculated for
the entire water saturation range (Figure 4). For both
parameters a good match between the original and the
simulated pore network is obtained at the micrometer
scale. As explained above this is due to the accurate fits
for each parameter of the PNM. For the nanometer scale
the differences between the original input data and the
simulated results are larger. In Figure 4A the difference
in moisture content between the different simulated
volumes is related to their respective open porosity. The
curves of the simulated volumes follow the trend of the
curve of the original input volume. Although for
microscopic volume 3 the difference remains large
between the input value and the average volume. This
can be explained due to the large spread of the porosity
values of the simulations as illustrated in Figure 3B. The
difference between the three volumes at the nanometer
scale indicates that these volumes are probably smaller
than the representative elementary volume. This is
especially the case for sample 3.

Traditionally PNMs have a certain robustness
towards the different parameters from which they are

made out. Idowu et al. [14] indicated that multi-phase
flow properties are consistent if the original topology is
well represented. In the generation of PNMs several
competing properties are balanced. E.g. if a flow path is
divided in more pore bodies it is anticipated to have a
lower permeability because there are more resistor
elements. However, this effect is balanced by smaller
radii and shorter throat lengths resulting in higher
permeabilities. Nevertheless, the results of this study
show that PNMs are rather sensitive to the volume
distribution of the pore bodies.

The results of this study are a first step towards the
development of a scale invariant workflow to generate
PNMs stochastically. In a next step these networks need
to be combined. However due to the large difference
between the scale of the micro- and nanometer datasets
this could not be achieved. A too large Sobel dataset of
900 GB needs to be generated to form the nanometer
scale porenetwork. More efficient numerical methods
need to be explored in the future to solve this problem.
Additionally, the initial tests indicate that a clear overlap
between the micro- and nanometer scale input data are
required to obtain accurate results and validate the
workflow.
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Fig. 4. Moisture retention and permeability curves for different simulation results; for the moisture permeability, the moisture content
has been presented logarithmically, for the better presentation of the entire range.

5 Conclusions

In this paper a workflow to generate PNM at different
scales based on correlated statistical distributions is
presented. The results clearly indicate the scale
invariance of the suggested workflow. The resulting
moisture retention and transport property simulations
show a good match between simulations and the original
data obtained from this complicated material at the
micrometer scale. For the nanometer scale further

statistical and numerical methods need to be explored in
the future.

Because of the broad applicability of PNMs and
their versatility to incorporate different scales without
exploding the calculation time required for simulating
different physical properties, PNMs have the potential to
resolve the problems related to simulate fluid flow in
complex pore-space systems, such as building materials.
In order to incorporate information of different data
acquisition techniques such as direct and indirect
imaging techniques, as well as the synthesis of different
pore networks obtained at different spatial scales (e.g.
the integration of nm, um and mm scale pore networks).
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This objective will form the bread and butter of our
further research, as it allows to combine all available
information about the pore space and come up with a full
scale network which is necessary to obtain accurate
simulations.
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