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Abstract. In the paper the mixed boundary value problem of antiplane 

vibrations is considered in the elastic wedge-shaped medium containing 

the radiating defect ��. Radiating generators are assumed to be located on 

defect boundaries and on the interval �� of the wedge free boundary as 

well. The problem of reconstructing   the wave field in the whole wedge-

shaped region with its boundary is stated. A number of problems of 

analyzing acoustic emission signals by radiating defect are reduced to the 

problem considered in connections with using non-destructive testing 

elements of the technological equipment under exploitation.   The problem 

in question is reduced to studying the solvability problems of the 

equivalent boundary integral equation system both for stress saltus on the 

defect  ��and contact stresses on the interval �� of the upper  plane of the 

wedge.     

1 Introduction 

The aim of the present paper is mathematical modeling of a pre-fracture state of the 

construction unit representing the junction of angular elastic elements. It is investigated 

correctness problems of applying mathematical modeling method for the wave process 

arising in angular elements examined by non-destructive testing methods both in hard 

industry enterprises and in ones of agricultural machinery. Under long dynamic exploitation 

of the technological equipment it appears the stress singularity at the angular point. In its 

neighborhood there arises the defect growing to the angular point (stress concentration) and 

generating the acoustic radiation (acoustic emission - AE). Non-destructive testing methods 

are worked out in details in [1-6]. At the paper the pre-fracture state is considered, provided 

the appearance of the radiating defect takes place only in one of angular elements. The 

angular element is modeling by elastic body of wedge-shaped medium, one of its planes is 

stiffly connected with other angular elements, radiating defect is modeling by the linear 

radial cut of finite length, antiplane vibration generators being located on the cut 
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boundaries.  The contact interaction zone is modeling by the harmonic oscillating punch 

under antiplane deformation (Fig.1).  

1. The boundary value problem is formulated for the dynamic elasticity equations in the 

domain �,  presenting  the angle of span � with cut ��, simulating the defect  located on the 

segment ���, 	�
 of the line ��
 . Oscillating coherent generators of the antiplane shear 

displacements  ��(�)����� of the equal intensity  are located on the banks of ��±. 

 

Fig. 1. Elastic wedge-shaped medium with radiating defect. 

On the upper plane  ��   harmonic oscillation generators  ��(�)�����  are located on the 

finite segment  ���, 	�
 as well.  The rest of the upper plane ��   is assumed to be unloaded 

and the lower plane �� is stiffly connected. In the vertex � = 0 there are no radiation 

sources and Somerfield’s radiation conditions take place at infinity. Under the steady 

oscillations there states  the problem of finding the unknown contact stresses in the zone  �� 

of the contact interaction with the punch, stress saltus  on the cut �� and the reconstructing 

displacement field in the whole domain �  including the upper boundary �� .     

Under harmonic oscillations with the frequency � displacements �(�, �, �)  obey the 

dynamic elasticity equations and are sought in the form �(�, �, �) = �(�, �) � !( − #��). 

The problem in question as it is known   in the classic statement is reduced to the next 

boundary value problem for the Helmholtz  equation of complex displacement amplitude �(�, �): $� + &�� = 0, &� = '��/)                                             (1) �|+,� = ��(�), � ∈ (��, 	�) 

./+0+,� = 0, � ∉ (��, 	�)                                                  (2) 

�|+,� = 0,         �0��± = ��( , 2),      ( , 2) ∈ ��±, 

where ', ) are density and  shear modules of the wedge material, ��± is the left and right cut 

boundaries of the cut �� = ��� ∪ ��4 respectively .  No radiation sources are assumed to be on 
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the vertex � = 0,  displacements vanish at infinity and Somerfield’s radiation conditions 

principle take place:  

787/ − #&� = 9 :��;<= , � = > � + 2� → ∞                                (3) 

The lack of   radiation sources on the vertex   � = 0    provides the fulfilment the Saint-

Venant principle and the existence of the solution in Sobolev space  @��(�), the norm 

being given by the traditional way.  

     Solving the problem stated above is based on its reducing  to the equivalent 

boundary integral equations (BIE)  about the unknown  (dimensionless) contact stresses 

amplitude )��./+0+,� = A�(�), �� < � < 	� on the upper plane and  the unknown 

amplitude saltus of (dimensionless) stresses C)��./+D0+,�
 = A�(�), �� < � < 	� on the 

defect ��.  

The statement of the problem in question leads to the next boundary value problem  in 

the domain �. To solve the problem there fulfils the construction of Green function    �(�, �|E, F) in the wedge-shaped domain without defect. Green function obeys the non-

homogeneous Helmholtz  equation and boundary conditions as follows:  

$� + &�� = − �GH/ I(E − �)I(F − �), &� = '��/)                        (4) 

7J7KL+,� = �M+,� = 0 ,              (5) 

where I( ) is Dirac’s function, n is the external normal to the boundary. Green function 

method is worked out in details [7-9] when solving static problems. The same method 

permits to solve boundary value problems of the dynamic elasticity and reconstruct the 

wave field generated by all vibration sources in the whole wedge-shared medium 

considered. As in the statement of the main problem (1), (2) no radiation sources are 

assumed to be on the vertex � = 0 and the same conditions at infinity take place.   

To construct Green function obeying non-homogeneous Helmholtz equation and 

boundary conditions (4), (5) the Kontorovich-Lebedev integral transform methods are used 

in the form 

�(N) = O �(�)&��P(Q�) R��S
�  �(�) = �H� U �V(N)W��P(Q�)NRNS�S                                     (6) 

where  WX(Q�), &X(Q�)  are  modified Bessel functions. 

Series of awkward transformations connected with solving the problem (4), (5) results  

the expression of Green function as follows: 

�(�, �|E, F) = U �(N, �, F)&��P(Q�)W��P(QE)S� NRN, 

�(N, �, F) = Y2 [ℎFN]ℎ(� − �)N]ℎ�N , � > F,
2 [ℎ�N]ℎ(� − F)N]ℎ�N , � < F  
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To obtain the boundary integral equation, to use the well-known integral representation 

of the regular solution of Helmholtz equation in the next form 

       �( , 2) = − ��H U _�( , 2|`, a) 787K − �(`, a) 77K �( , 2|`, a)bcd ReK                (7) 

fg = ��g ∪ ��g ∪ ��4 ∪ ��� ∪ �g, � = ��4 ∪ ��� 

In the formulas  (7)  contour �g is  the part of the circumference  of the finite radius R 

(with the center in the wedge vertex),  closing the angular domain, ��g , ��g  are  parts of �� , �� truncated by �g ,  n  is external normal to the boundary, ��± are banks of the cut ��. 

By virtue of coherence and equal intensity of vibration sources on the cut banks, boundary 

conditions, vanishing conditions for displacements and Green function as h → ∞, as well 

as radiation conditions (3) we obtain the limit expression of displacement in the whole 

wedge-shaped domain �: 

                   �( , 2) = ��H U � j787Kkl< ReKlm − ��H U �|n,�op 787KLl; ReK                       (8) 

In  (8)  let observation point  ( , 2) tends the left bank of the cut ��,  then  let the latter 

tends to the segment �� of the upper wedge plane where vibration sources are given  and 

pass to the polar coordinates (�, �). There results the boundary integral equation (BIE) 

system about the amplitude stress saltus A�  on the cut ��  and amplitude contact  stresses A� 

on the segment ��. BIE system takes the form:  

U r��(�, E)A�(E)RE +o;p; U r��(�, E)A�(E)o<p< RE = ��(�),    �� ≤ � ≤ 	�            (9)        U r��(�, E)A�(E)RE +o;p; U r��(�, E)A�(E)o<p< RE = ��(�), �� ≤ � ≤ 	�          (10)  

Let us introduce matrixes as follows 

r(�, E) = tr��(�, E) r��(�, E)r��(�, E) r��(�, E)u, 

r(�, E) = 2v� O &��P(QE)&��P(Q�)r(N)N[ℎvNRN, QS
� = −#& 

r(N) = t&��(N) &��(N)&��(N) &��(N)u = w �x�PP yx�
PPzx�Pyx�
PPzx�P yx�
Pzx(���
)PPzx�P {. 

Let us consider the auxiliary BIE, constructed on the base of (9), (10) and written in the 

abbreviated vector-matrix form 

1,2 1,2

min , maxi i
i i

a a b b

 

 
  
 
 

: 

U r(�, E) • A(E)RE =op �}(�), � < � < 	                                 (11)           

�} = ~�}�(�)�}�(�)�,  A = tA�(E)A�(E)u 
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 In the correlation (11) �}�,�(�) are results of extending of functions ��,�(�) to the 

interval(�, 	), matrix function r(N) is real both on the imaginary axis and on the real one 

where   r(N) is positively defined.  

2. To investigate the solvability problems for the BIE system the next theorem is 

established.    

2 Theorem 

Operator & of the left hand side (11) is uniquely inverted as operator acting in vector 

function spaces:  

&: �(�, 	) → @���(�, 	) �(�, 	) ⊂ @����(�, 	) 

where @��(�, 	), � = ± 1 2�  are Sobolev-Slobodetsky spaces  of fractional smoothness. 

     To prove the theorem, to put Q > 0 temporary.  Then by virtue of the positive 

definition of matrix r(N), N ∈ h�  the operator & appears to be  positively defined as well 

and induces the space �(�, 	) of generalized solutions of the equation (11), one being 

introduced by the norm 

‖A‖�(p,o) = ~O ��( ) • &( ) • �∗( )R S
� ���

 

�( ) = √ [ℎv U A([)&���(Q[)R[op  ,     0 <  < ∞ 

and the scalar product (* means complex  conjugation, T  is the  transposition option): 

(A�, A�)� = O ���( ) • &( ) • ��∗( )R S
�  

The use of Riesz’s theorem on uniqueness of representation   of linear continual 

functional in the Hilbert space [5] adduces to the solvability condition for   BIE system (11) 

as follows               

�� = U ��( ) • &��( ) • �∗( )R < ∞S�  , 

�( ) = √ [ℎv U �}([)&���(Q[)S� R[. 

Constructing the special two-sided estimation for the magnitude �� obtaining by the 

use of the integral representation of McDonald function  &���(Q[) [4] and Parceval equality  

for Fourier integral transform adduce to the condition �} ∈ @�;<(�, 	). It is well-known   the 

space @��� �� (�, 	) is conjugate to the space @�� �� (�, 	)  [6]. Then from the Riesz’s theorem  

it points out both the existence of the unique   solution A ∈ @��� �� (�, 	) for any right hand 

side  �} ∈ @�;<(�, 	) and the imbedding  �(�, 	) ⊂ @��� �� (�, 	).                         
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The result described is in accordance with known results on boundary properties of 

functions belonging to  Sobolev spaces @��(�, 	) in which the solution of boundary value 

problems is searched  by the dynamic elasticity methods.  

     The passage to the initial case Q = −#r is provided by the analytical continuation 

principle [12] since  all functions  are analytical with respect to  Q in the domain h� Q ≥ 0, Q ≠ 0 of the complex plane, where, in part,  the point Q = −#r is located. 

      It permits to ascertain the   unique solvability of the initial boundary value problem (1), 

(2) in the Sobolev space  @��(�) for the whole wedge-shaped domain and there results the 

inequality :         ‖A‖�(p,o) ≤ С��}��<;<(p,o), C= const 

meaning the correct solvability of the problem in question permitting to apply varies 

analytical  (for example, methods in[12]) and numerical methods  to approach  sought-for-

functions  A�, A�  as solutions of the BIE system  (9), (10) . 

The consequent use of described results  to narrowing of functions A� , ��(# = 1,2) from 

the domain (�, 	) to the initial  ones (�� , 	�) ⊂ (�, 	)  leads  to the unique resolution of the 

initial BIE system (9), (10) in spaces of  the fractional smoothness.   It means there exists 

the unique solution A� ∈ @��;< (�� , 	�) for any right hand side function 

�� ∈ @�;<(�� , 	�), i=1,2. 

The reconstruction of displacement wave field in � and in the boundary ��  may be 

fulfilled  by  representation (8)  which is presented by means of  displacements’ amplitude  ��( , 2) when radiating  AE from defect boundaries.  The displacement wave field may be 

considered as the base to the  statement of the inverse problem of   reconstructing the 

displacements’ amplitude ��(�) on the defect �� by means of  direct  displacement 

measurements.  It may be done when constructing the displacements’ amplitude frequency 

reply  on the  unloaded part of the boundary  ��   and  the sequel   application of  the least 

square  method [14,15]. 
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