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Abstract. Integrated energy system (IES) is an essential ingredient of energy reform. The construction of 
IES can promote the coupling utilization of multiple energy sources, and improve the reliability and 
flexibility of energy system. Based on amounts of literature study and experts’ recommendations, 9 first-
class indexes, 13 second-class indexes and 11 third-class indexes are confirmed to assess the integrated 
energy system from three dimensions of technology, economy, and environmental protection. Analytic 
Hierarchy Process (AHP) and fuzzy comprehensive assessment method are adopted to assess the overall 
quality of chosen integrated energy system. An industrial park is chosen to be an example and examine the 
evaluation condition of IES.  

1 Introduction 

Integrated energy system (IES) is an important part of 
energy internet, and it’s not only the research hotspot in 
the field of energy, but also the development direction of 
energy restricting. The core of IES is carrying out energy 
conversion, utilization, and multi-energy complement [1-
2]. U.S. Department of Energy had proposed a smart grid 
evaluation index system, which aimed to evaluate smart 
grid from six aspects [3]. The evaluation system can 
measure the reliability, security, and the interactive 
service for the user side of smart grid [4]. Europe also 
published smart grid earning evaluation index system to 
achieve the aim of improving grid earnings from nine 
fields and 21 key indexes [5]. 

In current literatures, methods of evaluation index 
always focus on power grid, and ignore the hot grid and 
cool gird [6-8]. Li et al. [9] built universal flow system 
models from the aspects of energy distribution, 
conversation, and storage. On this basis, the assessment 
system of IES from four dimensions of energy, devices, 
information, and system was come up. Luo et al. [10] 
studied the equivalent features of microgrid, and put 
forward the characteristics of intermittent power source, 
the islanding state of microgrid, and the benefits of 
microgrid. Zhang et al. [11] established an index 
evaluation model of park-level integrated energy system 
for microgrid from the aspects of economy, reliability, 
energy consumption and environmental protection. 

Currently, the main methods of comprehensive 
evaluation method conclude principal component 
analysis (PCA) [12], AHP [13, 14], entropy weight 

method (EWM) [7, 15, 16], Data Envelope Approach 
(DEA) [17] and the method for order performance by 
similarity to ideal solution (TOPSIS) [15]. However, 
PCA and EWM always have errors when the evaluation 
indexes with small range of changes, and DEA is easily 
affected by extremes. Cavallaro et al. [15] used fuzzy 
Shannon entropy and fuzzy TOPSIS to assess five CHP 
technologies in terms of economy and efficiency. Ren et 
al. [13] chose various of evaluation indexes such as 
primary energy consumptions, investment costs, carbon 
emissions, and applied AHP to analyse the Japanese 
power supply system. 

The AHP-Delphi method can combine the data and 
practical experience to a certain degree, and obtain more 
objective and reasonable evaluation indexes of IES. This 
method is used to determine the indexes and weight, and 
a park will be tested by fuzzy comprehensive assessment 
method. 

2 Establishment of synthetic evaluation 

Selection of evaluation index is both the foundation and 
key point of evaluation system of IES. Because the pros 
and cons of index always determine the quality of 
evaluation. Based on the construction concept of IES, 
this paper will expand the synthetic evaluation from 
three dimensions: technology, economy, and 
environment protection. Generally, IES is a multi-flow 
system, and it contains power flow, heating flow, cooling 
flow and so on. Third-class index aims at these questions 
to launch the discussion, and the synthetic assessment 
system of IES is illustrated in Figure 1. 
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Figure 1. The synthetic assessment system of integrated energy system. 
 

3 Establishment of weightiness and 
fuzzy discriminant vector 

For IES, synthetic evaluation always used to indicate the 
advantages and disadvantages of the single index. AHP 
combines both qualitative analysis and quantitative 

analysis. Fuzzy comprehensive assessment method uses 
exact mathematics model to deal with indefinable and 
fuzzy things. Therefore, AHP - fuzzy comprehensive 
assessment method is used in this study. The flow 
diagram of synthetic evaluation is shown in Figure 2. 
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Figure 2. The flow diagram of synthetic evaluation 

 

3.1 Establishment of weightiness 

3.1.1 First-class index 

Depending on Delphi method, importance degrees of 
each index are established, and the judgement matrix C 
of first-class index are illustrated in equation (1). 
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Initial index weight of first-class index W, eigenvalue 
of maximum 𝜆௠௔௫ and coincidence indicator CI can be 
calculated by AHP. 

 

 0.2977 0.0492 0.2159 0.0340 0.1047 0.0173 0.0239 0.0718 0.1517
T

W      (2)

After normalization,   

 0.3081 0.0509 0.2235 0.0352 0.1084 0.0179 0.0247 0.0743 0.1570
T

W     (3) 

Thus,  𝜆௠௔௫ ൌ 9.4014, 𝑅𝐼 ൌ 1.45, 𝐶𝐼 ൌ 0.05, 
CR=0.034<0.1, which meets consistency requirements. 

3.1.2 Second-class index 

In a similar way, judgement matrix, normalization matrix 
and initial index weight of second-class indexes can be 
calculated and the final weightiness of evaluation 
indexes are shown in Table 1. 

Table 1. Formatting sections, subsections and subsubsections. 
First-class index W Second-class index W Wz 

Reliability 0.3081 

Reliability of system energy supply 0.5076 0.1564 
Usability 0.3243 0.0999 
MTBF 0.0655 0.0202 

Fault recovery time 0.1026 0.0316 

Network loss rate 0.0509 
Power distribution network loss rate 0.7143 0.0363 

Network heating loss rate 0.1429 0.0073 
Network cooling loss rate 0.1429 0.0073 

Integrated energy efficiency 0.2235 / / 0.2235 

Demand side response 0.0352 
Peak load cutting 0.8333 0.0293 

Load forecasting accuracy 0.1667 0.0059 
Unit electricity cost 0.1084 / / 0.1084 

System investment payback period 0.0179 / / 0.0179 

Equipment economy 0.0247 
Equipment utilization 0.1429 0.0035 

Equipment operating savings 0.8571 0.0212 

Pollutant emission features 0.0743 
CO2 emission reductions 0.6667 0.0495 

Gaseous pollutant emission reductions 0.3333 0.0248 
Proportion of clean energy consumption 0.1570 / / 0.1570 

 

3.2 Establishment of fuzzy discriminant vector 

3.2.1 Partition of factors set 

Combined with the synthetic assessment system shown 
in Figure 1, index set F of first-class indexes is exhibited 
in equation (4). 
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       (4) 

 

3.2.2 Calculated membership 
Evaluation sets is shown in equation (5) and the score 
range is illustrated in Table 2. 

   V = v1,v2,v3,v4,v5 = very good;good; just so - so;not bad;bad                              (5) 
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Table 2. Score range and evaluation level 
Score 
range 

90-100 80-90 70-80 60-70 
Below 

60 
Evaluation 

level 
very 
good 

good 
just 

so-so 
not 
bad 

bad 

4 Calculation example 

An industrial park is chosen to be a calculation example. 
Based on expert evaluation, 5 pieces of data were 
collected to evaluate this example. After normalization, 
the memberships of each indicator are as shown in Table 
3. 

Table 3. The result of index membership 

First-class index Second-class index 
Membership (Bi, i=1, 

2, … ,9) 

Reliability 

Reliability of system energy supply (0.4,0.4,0.2,0,0) 
Usability (0.2,0.4,0.2,0.2,0) 
MTBF (0.2,0.2,0.4,0.2,0) 

Fault recovery time (0.2,0.2,0.4,0,0.2) 

Network loss rate 
Power distribution network loss rate (0.2,0.2,0.6,0,0) 

Network heating loss rate (0.2,0.4,0.4,0,0) 
Network cooling loss rate (0.6,0.2,0.2,0,0) 

Integrated energy efficiency / (0.6,0.2,0.2,0,0) 

Demand side response 
Peak load cutting (0.6,0.4,0,0,0) 

Load forecasting accuracy (0.2,0.2,0.4,0.2,0) 
Unit electricity cost / (0.4,0.2,0.4,0,0) 

System investment payback period / (0.2,0.2,0.6,0,0) 

Equipment economy 
Equipment utilization (0.6,0.2,0.2,0,0) 

Equipment operating savings (0.2,0.2,0.4,0.2,0) 

Pollutant emission features 
CO2 emission reductions (0.6,0.2,0.2,0,0) 

Gaseous pollutant emission reductions (0.4,0.2,0.4,0,0) 
Proportion of clean energy consumption / (0.2,0.2,0.4,0.2,0) 

 
Take reliability as an example. 


1

0.4 0.4 0.2 0 0

0.2 0.4 0.2 0.2 0

0.2 0.2 0.4 0.2 0

0.2 0.2 0.4 0 0.2

R

 
 
 
 
 
 

             (6) 

According to W21 = [0.5076   0.3243   0.0655   0.1026] 
T,  

   1 1 21 0.4 0.4 0.2 0.2 0.1026TB R W    (7) 

where, °  is fuzzy matrix composition operator, the 
calculation method is as follows: 
 

  
1 2( , , , )mB A R b b b                      (8) 

 1b , 1, 2, , .n
j i i ija r j m                    (9) 

After normalization, the fuzzy comprehensive 
evaluation vector of reliability:  

  1= 0.3071 0.3071 0.1535 0.1535 0.0788B (10) 

In a similar calculation way, the vectors of others 
first-class indexes can be calculated, and fuzzy 
comprehensive evaluation matrix is shown in equation 
(11). 
 

 
          1 2 3 4 5 6 7 8 9

0.3071 0.3071 0.1535 0.1535 0.0788

0.2 0.2 0.6 0 0

0.6 0.2 0.2 0 0

0.45 0.3 0.125 0.125 0

, , , , , , , , 0.4 0.2 0.4 0 0

0.2 0.2 0.6 0 0

0.2 0.2 0.4 0.2 0

0.5294 0.1765 0.2941 0 0

0.2 0.2 0.4 0.2 0

T

R B B B B B B B B B
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 
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 
 
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 
 
 
 
 
 
 

                (11)

 
Thus, according to the combined weightiness in 

Table 1:   
 

 0.3081 0.0509 0.2235 0.0352 0.1084 0.0179 0.0247 0.0743 0.1570
T

W     (12)
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Total fuzzy comprehensive evaluation vector: 

   0.3071 0.3071 0.2 0.1570 0.0788TB R W   

  (13) 
After normalization,  

 

 0.2925 0.2925 0.1905 0.1495 0.0750B 
   (14) 

Corresponding to  

 100 90 80 70 60V           (15) 

Then, 

85.78TS V B                        (16) 

It means that the score of this industrial park is 85.78, 
and the evaluation level of this integrated energy system 
is “good”. 

5 Conclusion 

The synthetic evaluation of IES is a very important work 
to monitor the operation status, and provide guidance for 
the future improvement and optimization. In this paper, a 
complete evaluation index system is established by AHP 
and Delphi method from three dimensions of technology, 
economy, and environmental protection. Also, an 
industrial park is selected to be a calculation example. 
After calculation based on the fuzzy comprehensive 
assessment method, evaluation score is obtained and 
corresponding evaluation level is good. The effectiveness 
and broad applicability of the synthetic assessment 
system are verified by the example. 
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