
* Corresponding author: kaljundi@lnec.pt 

Effects of temperature, test duration and heat flux in thermal 
conductivity measurements under transient conditions in dry 
and fully saturated states 

K. Aljundi1, A. Vieira1, J. Maranha1, J. Lapa2, R. Cardoso3 
 
1 LNEC - National Laboratory for Civil Engineering, Geotechnical Department, 1700-006 Lisbon, Portugal 
2 University of Aveiro, Civil Engineering Department, 3810-193 Aveiro, Portugal 
3 CERIS/IST- Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal  

Abstract. In shallow geothermal energy systems (SGES) thermal conduction can be considered 
the dominant process in the heat transfer between the primary circuit (borehole heat exchanger or 
thermoactive geostructure) and the surrounding ground. Thus, a proper characterization of soil 
thermal properties, namely of its thermal conductivity, is mandatory for evaluating this energy 
exchange. There are difficulties associated to the assessment of soil thermal conductivity by 
laboratory methods related, among other factors, to the samples’ quality and to the measuring 
method itself. The purpose of this work is to analyse the effect of changing test control parameters 
in thermal conductivity measurements in transient conditions by means of a high accuracy thermal 
probe in both dry and fully saturated states. In order to eliminate potential measurements’ 
deviations and errors due to sample variability the same reconstituted samples were used several 
times. In each condition the sand samples were systematically tested under different ambient 
temperatures (10ºC, 20ºC, and 40ºC) controlled by means of a climatic chamber. The effects of 
changing the tests heating time and imposed thermal fluxes were also analysed.

1  Introduction 

With the inflation of global population and consequently 
the increase in energy demand, local low-enthalpy 
geothermal energy sources are becoming a crucial matter 
of interest [1] for building acclimatization. Shallow 
geothermal energy systems (SGES), which are 
commonly known as Ground Source Heat Pump systems 
(GSHP), use the nearly steady temperature of the ground 
surface layers as an energy source and/or an energy sink 
in both heating and cooling modes [2]. Such systems 
have shown to be sustainable alternatives for buildings 
acclimatization when compared with conventional air-
conditioning systems [3]. 

SGES energy efficiency is highly dependent on the 
thermal energy transfer between the surface soil layers 
and the energy geostructure embedded within it. This 
heat transfer process is led by conduction due to an 
imposed temperature gradient occurring between soil 
and the geostructure (primary circuit of the GSHP) [4]. 
Hence, the evaluation of soil thermal properties, namely 
its thermal conductivity, is of major importance in 
analysing the heat transfer process [5].  

Thermal conductivity, � (W/(m.K)), is a physical 
property that measures the material capability to conduct 
heat [6]. According to Fourier´s law of heat conduction 

(Eq. 1), the heat flow rate vector � (W/m2) for a given 
temperature gradient �� in (ºC/m) is directly 
proportional to � [7]: 
 
� � ���	��     (1) 
 

Soil is a three-phase system consisting of solid 
particles and voids containing water and/or air. Its global 
thermal conductivity depends on thermal conductivity of 
each phase (solid, liquid and gas), as well as on its 
corresponding volumetric fraction and spatial 
arrangement [8].  

Grain size distribution, mineralogy, relative density 
and moisture content, among others, are important 
factors affecting the thermal conductivity [9]. Several 
studies [e.g. 10 - 12] have shown the major influence of 
soil water content on thermal conductivity, and 
consequently on the heat transfer on the primary circuit.   

Thermal conductivity � can be measured in the 
laboratory by means of several techniques, which can be 
divided into two large groups; (i) steady-state methods 
and (ii) transient methods [6]. In steady-state methods 
thermal properties are measured by establishing a 
temperature gradient across the sample that does not 
change over time, while in transient methods the time-
dependent heat dissipation is monitored. Steady-state 
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T=10ºC 

T=20ºC T=40ºC 

Q=0.85 W/m 

Q=2.49 W/m 

The effect of the relative density is, as expected, 
significant. Obviously, the reduction of the sample voids, 
results in higher conductivity. Thermal conductivity ) 
varied 20%, for e=0.85, and 27%, for e=0.70, taking as 
reference value the minimum ). 

3.2  Effect of heating time, ambient temperature 
and heat flux (dry sample, intermediate density) 

For the dry sample with intermediate density the effect 
of changing the magnitude of the heat flux was also 
tested. Therefore, for the same sample a new series of 
tests was performed for the same values of the test 
duration and ambient temperature. In Figure 5 are shown 
� measurements for the three test variables considered (t, 
T, Q). 

 

 

Fig. 5. Thermal conductivity of the specimen with 
intermediate density (15.35 kN/m3) under dry conditions. 
Effect of heating time, temperature and thermal flux 

For the same test conditions, an increase in the 
applied heat flux resulted in higher thermal conductivity 
values. Additionally, under a heat flux of Q=2.49 W/m, 
in the same sand sample, the same trends as the ones 
described previously, were observed, namely: an 
increase of  � with the heating time (100, 250, 500, and 
1000s) and with the climatic chamber temperature (10, 
20, and 40ºC).  

The thermal conductivity values ranged in dry state 
between 0.22W/(m.K) for variables (t, T, Q): (100s, 
10ºC, 0.85 W/m) and 0.29W/(m.K) for (1000s, 40ºC, 
2.49 W/m). This increase in the measured value of � has 
reached a relative difference of 31,8%. The relation 
obtained between thermal conductivity and heating time 
tends to be a logarithmic regression with R-squared 
values ranging between 0.944 and 0.968.  

3.3 Effect of heating time and ambient 
temperature (dry and fully saturated sample, 
intermediate density)   

The dry sample of intermediate density (e=0.7) was 
immersed in water until achieving fully saturated 
conditions. Thermal conductivity measurements were 
performed in the fully saturated state, changing the tests 
ambient temperature and heat duration time, for the same 

values as in the previous series. As the same sample was 
used a direct comparison between dry and saturated 
states is allowed.   

Figure 6 shows the values of thermal conductivity 
measurements at both dry and saturated states. As 
expected, the differences are very significant, reaching 
an increase of more than 10 times in the thermal 
conductivity of the same sample under the same 
temperature boundary condition.  

Globally the same trends were observed in the 
saturated sample, i.e., under an increase in temperature 
and in the test time duration, a higher thermal 
conductivity estimate is obtained by this method.  

Allover, in saturated conditions, � values have 
increased from 2.58 W/(m.K) at (100s, 10ºC, 0.85W/m) 
to 3.59 W/(m.K) at (1000s, 40ºC, 0.85W/m), which 
results in a 39% relative difference (to the minimum 
value). 

 

Fig. 6 Thermal conductivity of the specimen with 
intermediate density (15.35 kN/m3) under dry and 
saturated conditions. Effect of heating time and 
temperature (Q=0.85 W/m) 

4  Conclusions  

This preliminary study has presented thermal 
conductivity measurements using a non-steady-state 
method by means of a thermal probe. The experiments 
carried out in Fontainebleau sand samples in both dry 
and fully saturated conditions have shown a clear 
dependence of � on the sample state and test variables 
considered in this study. 

Experiments have been performed under three 
temperature ambient controlled conditions similar to the 
ones anticipated in the ground where a SGES is 
embedded. By testing systematically the same sample, 
the effect of heterogeneity is eliminated and the 
differences obtained are a direct result of the change in 
test control parameters. The main conclusions of the 
performed tested series, are that � increaseds with 
increasing test temperature and heat flux under both 
saturation states. The effect of the test heating time was 
also significant. The major differences were obtained 
under fully saturated conditions, where the � measured 
relative to the minimum value have varied as much as 
39%. Those differences in thermal conductivity values 
could be due to air or water convection in the soil voids 

Saturated 

T=10ºC 

T=40ºC 

Dry  

T=20ºC 

T=40ºC 
T=20ºC 

T=10ºC 
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and/or to the underlying theoretical model 
approximation. 
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