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Abstract. In the last decades, the consolidation of 3D CFD approaches in
the industrial design practices has progressively moved throughflow codes from
the top of design systems to somewhere in between first development stages
and the final aerodynamic optimizations. Despite this trend and the typical
limitations of traditional throughflow methods, designers tend to still consider
such methods as fundamental tools for drafting a credible aero-design in a short
turnaround time. Recently a considerable attention has been devoted to CFD-
based throughflow codes as suitable means to widen the range of applicabil-
ity of these tools while smoothing the predictive gap with successive three-
dimensional flow analyses.
The present paper retraces the development and some applications of a modern
and complete CFD-based throughflow solver specifically tuned for multistage
axial turbine design. The code solves the axisymmetric Euler equations with an
original treatment of tangential blockage and body force. It inherits its numer-
ical scheme from a state-of-the-art CFD solver (TRAF code) and incorporates
real gas capabilities, three-dimensional flow features (e.g. secondary flows, tip
leakage effects), coolant flow injections, and radial mixing models. Also ge-
ometric features of actual blades, like fillets, part-span shrouds, and snubbers,
are accounted for by suitable models.
The capabilities of the code are demonstrated by discussing a significant range
of test cases and industrial applications. They include single stage configu-
rations and entire multistage modules of steam turbines, with flow conditions
ranging from subsonic to supersonic. Computational strategies for design and
off-design analyses will be presented and discussed. The reliability and accu-
racy of the method is assessed by comparing throughflow results with 3D CFD
calculations and experimental data. A good agreement in terms of overall per-
formance and spanwise distributions is achieved in both design and off-design
operating conditions.

1 Introduction

Throughflow methods have been on the scene of turbomachinery design and analysis since
several decades. The first throughflow codes, based on the general S1/S2 theory of Wu [1],
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date back to the radial equilibrium concept (Smith, [2]), the streamline curvature (Novak, [3])
or the matrix throughflow method (Marsh, [4]). Later, during the 1970s, several researcher,
such as Hirsch and Warzee [5] or Denton [6], began to develop different methods for solving
the governing equations of the system. There has always been a great attention in improving
the capabilities of turbomachinery design methods.

Despite their relevant limitations, like the ones related to the difficulties and uncertainty in
transonic and supersonic flow conditions, or to the lack of detailed resolution of the flow field
inside bladed regions, throughflow methods maintained the role of workhorse tool in indus-
trial design systems. They represented the only practical way to obtain a three-dimensional
blade design, as well as applying local correlations to non uniform flows in the meridional
plane.

Starting from the 1990s, with the development of computer hardware, Computational
Fluid Dynamic (CFD) solvers dedicated to turbomachinery have become increasingly popular
in the industrial design process. Therefore, the gradual consolidation of 3D CFD approaches
has progressively moved throughflow codes from the top of design systems to somewhere in
between tools typically used during the first design phases (such as one-dimensional or two-
dimensional) and the three-dimensional steady and unsteady viscous solver based on CFD
employed for advanced design and optimization.

Despite this trend and the typical limitations of traditional throughflow methods, design-
ers are still relying on such methods as fundamental tools for drafting a credible aero-design
in a short turnaround time.

Recently, numerical methodologies borrowed from CFD approaches have been exploited
to solve the axisymmetric Euler [7] and Navier-Stokes [8] equations in the framework of
time-marching throughflow solvers. This is the case of studies conducted by Gehring and
Riess [9], Petrovic and Wiedermann [10, 11], Persico and Rebay [12, 13] and Simon and
Léonard [14–16].

In particular, a considerable attention has been devoted to the so-called CFD-based
throughflow codes as suitable means to widen the range of applicability of these tools while
smoothing the predictive gap with successive three-dimensional flow analyses. In prelimi-
nary stages, they are able to provide the designer with realistic performance and spanwise
distributions of flow parameters. Also, these models are able to treat any flow regime, that
is subsonic, transonic or supersonic without any major issue or particular assumption, and to
provide a more realistic meridional flow field with respect to classical methodologies. Shock
waves occurring in bladed or unbladed regions of the flowpath can be captured without intro-
ducing specific correlations for the related losses.

The present paper retraces the development and some applications of a modern and com-
plete CFD-based throughflow solver specifically tuned for multistage axial turbine design.
The code solves the axisymmetric Euler equations with an original treatment of tangential
blockage and body force, and inherits its numerical scheme from a state-of-the-art CFD solver
(TRAF code, [17]). Blade body forces are calculated directly from the tangency condition to
the meridional flow surface, which is iteratively adapted during the time-marching procedure
to address incidence and deviation effects. Dissipative forces are computed through a realistic
distribution of entropy along streamlines [18, 19]. The methodology incorporates real gas ca-
pabilities and three-dimensional flow features (like secondary flows and tip leakage effects),
coolant flow injections, and radial mixing models. Also geometric features of actual blades,
like fillets, part-span shrouds, and snubbers, are accounted for by suitable models [20, 21].

The capabilities of the code are demonstrated by discussing a significant range of test
cases and industrial applications. They include single-stage configurations and entire multi-
stage modules of steam turbines designed and manufactured by Ansaldo Energia, with flow
conditions ranging from subsonic to supersonic. Computational strategies for design and off-
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design analyses will be presented and discussed. The reliability and accuracy of the method is
assessed by comparing throughflow results with 3D CFD calculations and experimental data.
A good agreement in terms of overall performance and spanwise distributions is achieved in
both design and off-design operating conditions.

2 Computational Framework

The system of governing equations for the throughflow analysis is based on the axysimmetric
Euler equations which are written on a curvilinear coordinate system as:

∂bJ−1U
∂ t

+
∂bJ−1F

∂ξ
+

∂bJ−1G
∂η

= bJ−1S+ J−1Sb + J−1S f , (1)

with U the conservative variables vector, F and G the inviscid flux vectors. On the right-
hand side, S the source term vector arising from the formulation of the Euler equations in
cylindrical coordinates, Sb the variation of tangential blockage in the blade passage and S f
the body force fields that produce flow deflection and losses.

In particular, S f is composed by the blade body force field and the dissipative force field.
The first one is intended to produce flow deflection, without generating losses. Its intensity
is determined by the flow tangency condition to the streamsurface. The second one accounts
for viscous losses, based on the classical distributed loss model [6]. The dissipating force is
assumed to be aligned with the flow and opposite to it, so that it only results in loss generation.
Its intensity is computed by empirical correlations for design and off-design conditions, and
then distributed in the computational domain. Finally, an additional drag force is added to
the dissipative force field to simulate the presence of part-span snubber, damping wires or
snubbers, typically present in the last stages of steam turbines.

The throughflow method inherits its numerical scheme for the state-of-the-art CFD code,
TRAF code. The system of governing equations is discretized with a cell-centered finite-
volume scheme, and advanced in time using an explicit Runge-Kutta scheme [18]. Several
numerical flux schemes are available: they range from central schemes with artificial dissi-
pation to second order total variation diminishing (TVD) schemes built on different upwind
strategies, such as the AUSM+-up [21, 22].

3 Three dimensional flow features

Several novel models have been developed for three-dimensional flow effects in the through-
flow framework, such as for secondary flows, tip leakage and shroud effects. The details of
the models can be found in [19–21, 23], and therefore only a brief description is given here.
Secondary flows have been modelled as additional 3D flow features associated with the vor-
tices that are created when the non-uniform inlet flow is turned by the blade rows. They are
accounted for via a transverse velocity field which, in a circumferentially-averaged sense, is
assumed to be represented by discrete Lamb-Oseen-type vortices [19]. Tip leakage effects
for shrouded and unshrouded blades are modelled in terms of source and sink convective
terms [19]. The presence of part-span features, like snubbers or damping wires which are
commonly encountered in steam turbine blades, is modelled in terms of an additional drag
force field which is distributed locally in the area of the computational domain occupied by
the cross section of the device [21].

Secondary, leakage losses are provided via correlations. They are considered on a local
basis and distributed in the computational domain by suitable models. This is not sufficient
to ensure a realistic representation of the spanwise distributions of flow quantities. For this
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reason, in order to take into account the spanwise redistribution of flow distortions and losses,
that typically occurs in multistage turbomachines, a radial mixing model has been studied and
implemented [20].

4 Applications

The capabilities of the code are demonstrated by discussing a significant range of test cases
and industrial applications. They include single stage configurations and entire multistage
modules of steam turbines, with flow conditions ranging from subsonic to supersonic, as well
as design and off-design operating conditions. The reliability and accuracy of the method is
assessed by comparing throughflow results with 3D, steady, viscous, CFD calculations and
experimental data.

Figure 1: Meridional view of the KTH 4b stage and of the CT3 stage.

4.1 KTH 4b Stage

The first test case is a subsonic high-pressure steam turbine, the KTH 4b, an open-cycle test
facility which was investigated at KTH Royal Institute of Technology [24]. The blades are
mounted radially on the rotor disc while the vanes have been stacked with a certain lean
angle with respect to the stator disc radial direction. The operating point investigated in the
present work, which is close to the design one, has a speed of 4010 rpm, correspondig to an
isentropic velocity ratio of 0.43, ν = (Ωrmean)/

(√
2∆his

)
, at a fixed Reynolds number equal

to 0.545 ·106. The facility allow us to highlight the average effect of three-dimensional flow
features, especially leakage effects due to the shroud on the rotor blade.

The Ainley-Mathieson correlation [25] was used to estimate losses and the deviation an-
gle, while for the incidence was adopted the Benner correlation [26]. Computed and mea-
sured spanwise distributions are compared in Figure 2 in terms of absolute flow angle and
absolute Mach number at the outlet of each blade. A faithful reproduction is clearly evi-
denced for all the considered flow properties. The main discrepancies between throughflow
results and measurements can be observed at the stator exit (Figures 2a, 2b), in the first 10%
of the span. The relevant velocity defect together with the strong deviation are not well cap-
tured by the throughflow analysis. The effects of the shroud treatment result in a very good
reproduction of the Mach number peak in the tip region (Figure 2d).
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(a) (b) (c) (d)

Figure 2: Predicted and measured spanwise distributions of flow quantities in planes 2 and 3
for the KTH 4b stage at ν = 0.43

4.2 CT3 Stage

The second test case is a high-pressure transonic gas turbine, the CT3 stage, which was
experimentally investigated at the von Kármán Institute [27]. The facility is able to simulate
the aerodynamic performance of high-pressure turbines, reproducing the operating conditions
encountered in modern aeroengine. In particular, three conditions (Nominal, Low and High
pressure ratio) were investigated in the present work, at a fixed Reynolds number, with a
rotational speed equal to 6500 rpm. The aim was to scrutinize the predictive capability of
the solver at off-design conditions, and so the capability of three-dimensional flow features,
without any specific calibration of the models constants.

Throughflow results are compared in terms of spanwise ditributions with experimental
data and 3D, steady, viscous, CFD calculations obtained with the TRAF code [17]. At the
design condition (Figures 3a, 3b, 3c, 3d) the results obtained with the throughflow solver are
in very good agreement with the experimental distributions. In particular, the absolute flow
angle and the total temperature (Figures 3a, 3c) are found in better agreement with respect
to the 3D CFD results. Some discrepancies close to the edwalls are related to the strong
distortions. The same considerations hold for the low (Figures 3e, 3f, 3g, 3h) and the high
(Figures 3i, 3j, 3k, 3l) operating conditions, where we can still observe the overall good
reproduction of the radial distributions of flow quantities. The particular configuration of this
transonic test case, with a low aspect ratio, highlights the ability of the throughflow solver to
capture the relevant changes of the radial distributions for different expansion ratios.

The predicted performance are compared with the measured values in Table 1. The cal-
culated power is overestimated with respect to the experimental results. This slight mismatch
can be connected to the appreciable discrepancies in the spanwise total pressure distributions
of Figure 3b.

Table 1: Relative differences between computed operating characteristics (throughflow and
3D CFD TRAF) and measured for the CT3 stage at nominal condition.

Parameter εT F [%] εCFD [%]

Power 3.05 2.54

5

E3S Web of Conferences 197, 11013 (2020)
75° National ATI Congress

https://doi.org/10.1051/e3sconf/202019711013



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3: Predicted and measured spanwise distributions of flow quantities in plane 3 for the
CT3 turbine stage at nominal (3a, 3b, 3c, 3d), low (3e, 3f, 3g, 3h) and high (3i, 3j, 3k, 3l)
conditions.

4.3 Low-Pressure Steam Turbine

The capability of the procedure is further assessed by analysing the low-pressure modules
of two modern large steam turbines designed and manufactured by Ansaldo Energia. These
configurations are very challenging for a throughflow code: from a geometrical point of
view, they share high casing flare, leaned stators and highly twisted rotors, while from an
aerodynamic point of view, the last stages are characterized by very high steam velocities
that convey supersonic flow at nozzle roots and rotor tips.
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The first module is the the ND48 with the last rotor blade of about 48 inches high and
a snubber installed at mid-span in order to overcome the structural problems. All the rotor
blades are shrouded [28]. The meridional grid amounts to 76000 cells. The Craig and Cox
correlation [29] was used to estimate losses, while for the deviation angle was adopted the
Ainley-Mathieson correlation [25], integrated with the Traupel one for supersonic flows [30].

A first comparison between throughflow and circumferentially-averaged 3D CFD solu-
tions in terms of the absolute Mach number is presented in Figure 4. The Mach number level
predicted by the two simulations is very similar in all the three stages. A noticeable differ-
ence concerns the representation of the snubber effects. In the 3D CFD solution, the impact
of the snubber is associated with a quite deep turbulent wake that spreads over a relevant
span fraction as it is convected downstream. Such a behaviour cannot be reproduced in the
throughflow analysis due to lack of viscous and turbulent stresses in the model. In Figure 5,
the throughflow radial distributions of absolute flow angle and absolute Mach number at the
last two rotors trailing edges are in satisfactory agreement with 3D CFD predictions. In par-
ticular, the distributions at the third stage outlet highlight the already noticed difference in
the predicted effect of part-span snubber. Additionally, the impact of the shroud-cavity flow
reinjection appears very similar in throughflow and CFD predictions, as it can be noticed in
the absolute flow angle distribution near the casing at the second stage outlet.

Figure 4: Computed absolute Mach number contours for the last three stage ND48 LP turbine.

Figure 5: Spanwise distributions of flow quantities for the last two stage ND48 LP turbine.
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The second low-pressure module, the Enel 320, is characterized by a pressure ratio of over
6:1, with a high peripheral speed in the last stage blade speed and a relative Mach number
up to 2. A system of damping wires are presented on the last two rotor blades. Only the last
rotor blade in unshrouded [31], [32].

The comparison between computed flowfields in the meridional plane is again carried out
in terms of absolute Mach number contours, as shown in Figure 6. Also in this test case, the
predicted levels are practically the same in all the four stages. It is important to underline
the good reproduction of the peak supersonic Mach number close to the tip endwall at the
last stage outlet, which is very similar to the one predicted by the 3D CFD code. Even if it
is an axisymmetric shock-wave that is seldom encounterd in the actual operation of steam
of gas turbines, shock capturing capabilities represent a very desirable feature in meridional
analyses, as they offer an approximate but realistic way to introduce supersonic flow losses
in throughflow analyses, without the need of a dedicated correlation. The accuracy achieved
with the present throughflow analysis is also confirmed by spanwise distributions at the tur-
bine exit (Figure 6), which are compared with 3D CFD results and available experimental
data. The proposed tip clearance treatment is highlighted by the distributions of relative
Mach number close to the casing. Instead, the effect of the damping wires can be appreciated
in terms of absolute Mach number, which appears attenuated in the throughflow results with
respect to 3D CFD predictions.

Figure 6: Computed absolute Mach number contours for the last four stage Enel 320 LP
turbine, with spanwise distributions of flow quantities for the last stage.

5 Conclusion
A modern and complete CFD-based throughflow code with a widen range of applicability has
been presented in this paper. Three-dimensional flow features and geometric characteristics
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are accounted for by suitable models. The capabilities of the code are widely demonstrated by
discussing single-stage configurations and entire multistage modules of steam turbines, with
flow conditions ranging from subsonic to supersonic. The comparison between throughflow
results, 3D CFD calculations, and experimental data, demonstrates the good agreement in
terms of spanwise distributions and meridional flow field. It is believed that the performance
of the proposed methodology is in line with the requirements of fast engineering predictions
for the design of modern axial flow turbines.
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