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Abstract. The problem of synthesis of filters to estimate the state of 

dynamical systems is considered based on the condition for the maximum 

of the generalized power function and stationarity of the generalized 

Lagrangian and Hamiltonian of the estimated system model. The paper 

demonstrates that the use of invariants in combination with the 

decomposition principle makes it possible to simplify the equations of 

controlled motion and reduce them to a system of independent equations in 

terms of the number of degrees of freedom. This approach reduces the 

number of unknown parameters of the motion model, which greatly 

simplifies the adaptation process when developing filters for quasi-optimal 

estimation of the state parameters of dynamic systems. Comparative 

analysis of the results of the mathematical simulation shows that the 

application of the proposed method increases the efficiency of filters of the 

Kalman structure. 

1 Introduction 
Modern control systems set high requirements for the accuracy of the input data. Noises, 

systematic errors and other factors distorting the reliability of the measured data can cause 

failures in the operation of a single module and the entire system as a whole.  

An effective solution to the problem to ensure the specified accuracy is the use of the 

Kalman filtering procedure [1]. Its disadvantages are due to the relatively high 

computational complexity, difficult determining the parameters of the mathematical model 

of the stochastic system, weak dependence of the feedback coefficients on observations in 

the steady state, etc [2]. Traditional methods of creating filters under conditions of 

unknown regular influences do not always allow to obtain highly accurate estimates [3]. 

It is possible to reduce the error and increase the stability of the estimation procedure by 

adapting it to significant model perturbations. Such adaptation can be realized using the 

methodology of the combined maximum principle [4], which leads to a model of a 
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dynamical system that satisfies the Hamilton-Ostrogradskii principle [5]. The structure of 

the model is determined based on the condition of the maximum of the generalized power 

function up to a nonlinear synthesizing function that determines the rate of dissipation and, 

accordingly, the degree of structural adaptation [6]. However, the nonlinearity of the 

proposed model limits the possibilities of its application. 

This requires the development of a new method to solve the problem to synthesize 

filters for estimating the state of dynamical systems based on the condition for the 

maximum of the generalized power function and the stationarity of the generalized 

Lagrangian and Hamiltonian of the model of the estimated system. 

The use of invariants in combination with the decomposition principle without invoking 

a linear approximation makes it possible to simplify the equations of controlled motion and 

reduce them to a system of independent equations in terms of the number of degrees of 

freedom. This approach reduces the number of unknown parameters of the motion model, 

which greatly simplifies the adaptation process when developing filters for quasi-optimal 

estimation of the state parameters of dynamic systems. 

The scientific task is to develop a method to synthesize a filter for quasi-optimal 

estimation of the state of dynamical systems with an adaptive model based on the 

decomposition principle with the construction of kinematic constraints based on the 

condition of constancy of motion invariants. 

The purpose of the work is to develop a discrete filter to estimate the state and a 

procedure for the filter adaptation. 

2 Formulation of the problem 
The basis for construction the state estimation filter is a mathematical model of the 

dynamics of the process under study. In accordance with the analytical mechanics laws, the 

mathematical model of the motion of a dynamic system follows from the Hamilton-

Ostrogradskii principle, according to which [7] 

� �
1

0

0,

t

t

S T A dt� � �� �� � �� (1) 

for the action integral  

� �
1

0

,

t

t

S T A dt� �� (2) 

where 0 1,t t  is the start and end time of observations. 

Kinetic energy for a dynamical system with stationary constraints [7] 
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where ,s sq qsq  are generalized coordinates and velocities, 

ska  are the coefficients of inertia, namely the elements of a quadratic form matrix, 
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n  is the number of degrees of freedom.  

The work of the generalized forces on the observed trajectory is determined by the 

following expression: 
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where  sU  are the generalized control forces, 

sq
�

� sq

 are the dissipative generalized forces, 

sq
��
�

 are the potential generalized forces. 

Then the Lagrange formalism allows to obtain the equations of motion in the following 

form [7, 8] 
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 are the Christoffel symbols of the first kind for 

the matrix of the quadratic form Т.  

The use of model (5) for constructing a filter for the state estimation, taking into account 

the completeness and detailing of the description of the process of evolution of the 

parameters of the object under study, is rather complicated, and such a model is not widely 

used in the practice of statistical synthesis.  

Dynamical systems (5) are essentially nonlinear systems of a high order, which are 

characterized by the presence of significant dynamic interaction between elements (degrees 

of freedom). The intensity of mutual influence is characterized by the coefficients ska  in 

the kinetic energy model T. The presence of mutual influence and various disturbing factors 

makes difficult to solve the problem to estimate the parameters of systems described by 

equations (5). 

One of the possible approaches to solve problems to construct models of controlled 

systems (without using a linear approximation) is the decomposition principle. The essence 

of this principle [9] is to completely eliminate the dynamic mutual influence between the 

elements using admissible control, to bring the system to a motion in the decomposition 

mode and to choose this control (eliminating mutual influence) so that the system (5) 

moves in accordance with the control goal, providing the given value of the functional 

characterizing the quality of the state assessment process. Thus, due to feedbacks, the 

closed system begins to move in a mode close to sliding and becomes a follower of the 

trajectories determined by an observer (in the sense of the estimation criterion). This means 
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that the system under consideration (i.e., a nonlinear multiply connected high-order 

dynamical system) begins to move through a finite time interval due to the simplest system 

[9] This fact can be used to construct a model of the system under study. 

Let us consider the mathematical formulation of the problem. The formal assignment of 

a part of the energy to the work of the generalized forces � �sQ q,q,U �  during motion in the 

decomposition mode allows to introduce the simplest positively defined quadratic form of 

velocities, which is interpreted as the kinetic energy of the system (5) [10] 

2

1

1
, 1, .

2

n

ss s
s

T a q s n
�

� �	 2 1q s n2 , 1,1,s (6)

This form is used later to build a model of the estimated process dynamics. 

We assume that the observation equation has the form 

 ,y q v� � (7)

where v  is the vector of random actions on the observation channel with a known 

intensity. We choose the coordinates in which observations are made as generalized 

coordinates. 

In the observation space we choose a target functional [5] that takes a certain specified 

value, which determines the accuracy of measuring the phase coordinates of the system 

under study 
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where ssN  are the elements of the diagonal weight matrix N, characterizing the intensity of 

interference in the observation channel, the sign ^ means the estimate operation, D is the 

weighted variance. 

Let us formulate the problem to construct a mathematical model of the process of an 

observed (7) and controlled by criterion (8) dynamic system with the kinetic energy (6), 

taking into account that the motion of the dynamic system in the decomposition mode 

follows from the Hamilton-Ostrogradskii principle (1). The resulting model has an explicit 

relation to the gradient of the functional (8) [7, 8], belongs to the class of adaptive models 

and can be used to construct a filter for the state estimation of the Kalman structure. 

3 Building an adaptive model 
Let for the observed system (7) with kinetic energy (6) in the decomposition mode due to 

feedbacks the model moves in accordance with the goal which is determined by the value 

of the functional (8). We require that the generalized kinetic potential 

1 0T F��� � , (9)

where �  (D) is the Lagrange multiplier acting as the model parameter. This allows to 

establish a kinematic constraint 
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and by the assumption that motion in the decomposition mode completely eliminates the 

dynamic mutual influence between the elements, we have the following relation 

1 1 1 , 1, .s ss ss s sq a N y q s n�� � �� � �1q a 1

s ss
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(11)

The general form of the equation for the dynamic quasi-deterministic estimation by 

criterion (8) is determined as follows [6] 
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Taking into account the accepted model of kinetic energy (6) and the kinematic 

constraint (11), we obtain the estimation equations in the form 

� � � � � � � �� �1 1ˆ ˆ ˆ , 1, .s s s s s sq t q t y t q t s n� �� �� � � � �� � � � �1 1ˆ ˆq t� �ˆ � � �1 q̂ � �q � �1 ˆ�� q � �  . (12) 

where s ss ssa N� ��  is the adaptation coefficient. 

This is an equation of the dynamical system controlled by criterion (8) with the kinetic 

energy (6) when moving in the decomposition mode.  

Now we consider the problem to construct the Kalman filter for the equations of the 

model (12) and the observation (7). 

4 Discrete filter synthesis 
Equation (12) can be used to adapt the model of motion with respect to the parameter �  

for a given value of functional (8) when constructing the adaptive filter for estimation of the 

parameters of dynamic systems [6, 11]. 

Equation (12), taking into account the simplest scheme of the Euler finite-difference 

approximation, can be represented in the vector-matrix discrete form: 
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Y  is the observation vector, 

t�  is the sampling interval,  

�  is the adaptation coefficient, 

Nis the spectral density of the observation noise. 

Suppose that, as a result of adaptation, the value of the parameter �  is found as a result 

of numerical simulation of the model (13). In this case we obtain some approximation 

(estimate) of the true value of the parameter q̂ q� . Then from equation (12) we obtain a 

stochastic differential equation, which serves as the basis for constructing a model of the 

dynamics of continuous stochastic systems and can be described by the nonstrict Langevin 

equation [5] 

� � � � � �1 1 1 1ˆ ˆq t N q t N w t� �� � � �� � �� � � �1 1 1 1ˆ ˆq � �ˆ � �� 1 1 ˆN q � �1 1 ˆ1 , (14) 

where � �q̂ t  is the estimation of the system state, 

� �w t  is the input noise [1]. 

Since in the decomposition mode the dynamic mutual influence of the degrees of 

freedom is eliminated (compensated), the system begins to move due to a system of 

unlinked non-interacting subsystems. This allows to consider a one-dimensional case. The 

observation for the one-dimensional case is described by equation (7). 

In accordance with [4] the solution of the filter problem requires the use of a formal 

procedure for expanding the state space, which allows to write (14) in the form of a first-

order vector differential equation: 
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 0X  is the vector of initial conditions, 

 � �tW  is the vector of random actions with covariance matrix Q .  

Discrete model for (15) is: 
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Observation equation (7) in discrete form is: 

� � � � � �.i i i� �Y HX V (17) 

where � �iV  is the vector of measurement error with the covariance matrix � �iR ,  

E3S Web of Conferences 210, 01002 (2020)

ITSE-2020
https://doi.org/10.1051/e3sconf/202021001002

6



 

 

 

 

 

 

1 0

0 0

� �
� � �

� �
H  is the projection of the state space onto the observation space. 

Equation (16) has a form that allows to synthesize the Kalman filter [12]. 

For the classical Kalman filter, the corresponding matrices [12]: 

2
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t
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F G Q (18) 

According to the generalized Bayesian estimation scheme, the Kalman filter consists of 

two series-connected devices: the extrapolator that predicts the state of an object one step 

ahead, and the filter that refines the extrapolated value based on new measurement [12].  

The discrete Kalman filter algorithm has the form: 
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(19) 

where � �ˆ iX  is the estimate of the state vector, � �ˆ | 1i i �X  is the extrapolated state 

vector estimate, � �iP  is the state vector estimate covariance, � �| 1i i �P  is the extrapolated 

state vector error covariance, � �iK  is the filter matrix gain, I  is the unity matrix. 

5 The procedure for adapting the model and evaluating the 
efficiency of the developed filter 
Let us consider a dynamic system associated with the estimation of the angular position of 

an unmanned aerial vehicle (UAV) by the roll angle [13]. In the case when the UAV is in a 

stationary mode, the traditional Kalman filter makes it possible to achieve a satisfactory 

accuracy in estimating the angular position. However, in the case of maneuvers or external 

forces (for example, atmospheric turbulence), the accuracy of the estimate decreases [14, 

15].

An experiment was carried out to determine the filtration efficiency by the algorithm 

(19) with the adaptive model (16) and with the traditional model (18), as well as to compare 

the results obtained with the corresponding estimate by the adaptive extrapolator (13).  

Let the measuring channel form the data for determining the angle by an accelerometer, 

which design feature is a high level of noise. Let us consider test modes determined by 

stepwise and oscillatory disturbing actions onto the dynamic system: 

a) Stepwise action 

Initial data for numerical simulation: 
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� � � �
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X P

where v�  is the standard deviation of the observation noise. 

As a result of the model adaptation by functional (8), we obtain the value of the 

adaptation parameter of =0.005� . 

The results of the extrapolator and filters operation are shown in Figure 1, where the 

abscissa indicates the time in seconds, the ordinate indicates the roll angle, the numbers 

indicate:  

1 – adaptive extrapolator (13); 

2 – evaluation of the proposed algorithm (16); 

3 – evaluation of the traditional Kalman filter (18). 

4 – initial perturbation. 

b) Oscillatory action 

Initial data for numerical simulation: 

� � � �

� �

0 1 0.5
1 , 1 |1 ,

0 0.5 1

0.02с, 9 60% of the amplitude of the action .vt �

� � � �
� �� � � �

� � � �
� � �  

X P

As a result of the model adaptation by functional (8), we obtain the value of the 

adaptation parameter of =0.0025� . 

The simulation results are shown in Figure 2, where the notations correspond to Figure 

1.

 

Fig. 1.Transient process in the case of stepwise action.
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Fig. 2.Transient process in the case of oscillatory action. 

The averaged RMS deviations of the estimates of the UAV roll angle under various 

action modes are given in Tables 1 and 2. 

Table 1.RMS deviation of the roll angle estimation under stepwise action 

 Classic model 
(18) 

Adaptive model 
(16) Extrapolator (13) 

Over the entire 

observation interval 3.21  2.6  3.01  

On the transient interval 3.75  3.49  3.85  

Table 2.RMS deviation of roll angle estimation under oscillatory action 

 Classic model 
(18) 

Adaptive 
model (16) 

Extrapolator 
(13) 

Over the entire 

observation interval 3.99  3.33  4.18  

On the transient interval 4.06  3.31  3.89  

The study of each of the described algorithms is carried out for various RMS deviations 

of observation noise (10%, 20%, 40%, and 60% of the amplitude of the action), with 25 

realizations for each value. The dependences of the RMS deviation of the estimate (along 

the ordinate) on the RMS deviation of the observation noise (along the abscissa) are shown 

in Figures 3 and 4, where the numbers indicate: 

1 – RMS deviation of the adaptive extrapolator (13), 

2 – RMS deviation of the adaptive filter (16), 

3 – RMS deviation of the traditional Kalman filter (18). 
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Fig. 3.RMS deviation of the roll angle estimation under stepwise action 

Fig. 4. RMS deviation of roll angle assessment under oscillatory action. 

6 Conclusions 
The results obtained allow us to conclude that the estimation error is reduced when using 

the adaptive model as part of the filter. An increase in accuracy is observed in a wide range 

of observation noise, which indicates effectiveness of the developed method and 

practicability to use the quasi-optimal adaptive algorithms based on the condition for the 

maximum function of the generalized power in filtering systems. 

The reported study was funded by RFBR, project number 19-38-90273, 18-08-01494 А, 18-01-

00385 А. 
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