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Abstract. An approach to solving the biharmonic equation of the plane 

problem of the theory of elasticity by the numerical-analytical method of 

boundary elements is developed. The reduction of the two-dimensional 

problem to the one-dimensional one was carried out by the Kantorovich-

Vlasov method. Systems of fundamental orthonormal functions and the 

Green function are constructed without any restrictions on the nature of the 

boundary conditions. A numerical example of solving a plane problem by 

the boundary element method for a rectangular plate is considered. The 

results are compared with the data of finite element analysis in the ANSYS 

program and those obtained by A.V. Aleksandrov. 

1 Introduction 
As you know, there are two types of plane problems that describe two different types of 

stress-strain state — plane stress state (PSS) and plane deformed state (PDS), which are 

described by the same mathematical apparatus and therefore are combined into one 

problem — a plane problem of elasticity theory [1]. 

PSS or PDS occurs in many structures. So, thin plates, beam-walls, shells work in 

conditions of a plane stress state, and dams, strip foundations, road surfaces undergo plane 

deformation. Such a wide coverage of objects (and not all are listed), indicates that the 

development of new methods for solving a flat problem continues to be an urgent problem. 

1.1 Recent research and publication analysis 

The main methods for solving a plane problem are well known and described in numerous 

classical literature on the theory of elasticity [2–4]. However, a solution in an analytical 

form is possible only in some special cases of loading bodies of simple geometric shape and 

the conditions for their fastening. Therefore, approximate methods are used to implement 

applied engineering problems. 

Research in this area is actively ongoing. From the works of recent years, we note the 

article [6], which presents the procedure and results of the numerical solution of plane 

problems of the linear theory of elasticity for complex construction geometry by the direct 

method of boundary elements. A.G. Ovsky [7] gives algorithms for automating analytical 
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methods by which the preprocessor preliminarily derives the symbolic differential solution 

of the general problem of the static theory of elasticity for multilayer bodies. The 

algorithms used to construct the models are general in nature and can be applied to any of 

the systems of computer mathematics. In the article [8], the formulation and 

implementation scheme of a new method for solving plane problems of the theory of 

elasticity based on the diagonalization of a system of equilibrium equations is presented; 

analytical solutions of three plane problems in voltages for loading the strip with a complex 

load are obtained. 

In [9], an analytical solution was constructed for the plane problem of the theory of 

elasticity in stresses for a nonuniform bandwidth. To derive resolving equations, direct 

integration of the original equations is performed. In the space of Fourier transforms, the 

resolving equations are reduced to the Volterra integral equation of the second kind, which 

is solved by the method of successive approximations. The method of a general complex 

variable function for solving a plane problem in the theory of elasticity was proposed in 

[10]. The paper [11] describes a numerical solution of a plane problem. Here, the 

discretization algorithms by the mixed finite element method are described. The discrete 

circuit allows the use of the Brezzy – Douglas – Marini element (BDM1) for the stress 

tensor and piecewise constant elements for displacement. A comparison is made with the 

results of previously published works and with those obtained in ABAQUS. 

1.2 Study purpose and objective  

The aim of this work is to solve the equation of the plane problem of the theory of elasticity 

based on the numerical-analytical method of boundary elements [12, 13] (NA BEM) 

without any restrictions on the nature of the boundary conditions. To achieve this goal, it is 

necessary to determine the complete system of fundamental solutions of the biharmonic 

equation of the problem, to construct the Green's function, to perform a numerical 

implementation of the FEM algorithm and to verify the results obtained. 

1.3 Main part of the study 

To solve a flat problem in stresses, the stress function   is used — D. Erie function, 

defined in the form [14]. 
 

2 2 2

2 2
, , .x y xy

y x x y

  
  

  
= = = −
   

                                (1) 

 

When using the stress function, the basic equation of the plane problem takes the form: 
 

4 4 4

4 2 2 4
2 0

x x y y

    
+ + =

   
.                                             (2) 

 

Using the Kantorovich-Vlasov method, we reduce the two-dimensional problem to the 

one-dimensional one. We define the stress function in the form of an infinite series. 

 

            
1

( ) ( )m m

m

Y y X x


=

= .                                 (3) 

 

We will not specify the form of the function X for now, but in expansion (3) we keep 

only the first member of the series: 
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( ) ( )Y y X x = .                                       (4) 

 

We substitute (4) into the biharmonic equation (2): 

 

2 0IV II II IVX Y X Y XY+ + = .                             (5) 

  

Multiply both sides of equation (5) by X and integrate on the segment 
1[0; ]l : 

 
2 2 0,II II II IVY X Y X X YX X+ + =  

 

and after integration: 
1 1 1

2

0 0 0

2 0

l l l

IV II II IVY X dx Y X Xdx Y X Xdx+ + =   . 

 

We introduce the notation: 

 
1 1 1

2

0 0 0

; ; .

l l l

II IVA X dx B X Xdx C X Xdx= = =    

Then 

2 0.IV IIY A Y B YC+ + =  

 

Note 2 4/ ; / ,B A r C A s= − =  we will get 

 
2 42 0IV IIY r Y s Y− + = .                          (6) 

 

Now we express the stresses and displacements through the functions Y and X. 

The normal and tangential stresses in the plane problem of the theory of elasticity are 

defined as: 

 
2 2 2

2 2
, , .II II I I

x y xyY X YX Y X
y x x y

  
  

  
= = = = = − = −
   

          (7) 

 

Multiply both sides of (7) by X and integrate from 0 to l1: 

 
1 1

2

0 0

,

l l

II

x Xdx Y X dx =   

              
1 1

0 0

,

l l

II

y Xdx Y X Xdx =             (8) 

1 1

0 0

.

l l

I I

xy Xdx Y X Xdx = −   

 

We divide each of the equations (8) by А: 

 
* ;II

x Y =  

                     * 2 ;y r Y = −                   (9) 
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* 2 ,I

xy t Y = −  

  

where * * *, ,x y xy   — generalized stresses, defined by expressions 

 

( )
1

*

0

( ) , / ;

l

x xy x y Xdx A =   

( ) ( )
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, / ;

l
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1

*

0
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0

; .
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IC
t C X Xdx

A
= =   

  

Find the generalized displacements u and v corresponding to the generalized stresses 

(9): 

 

( )
1

;x y

u

x E
 


= −


 

               ( )
1

;y x

v

y E
 


= −


           (10) 
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u v

y x E


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We set for u and v the relations: 

 

( ) ( ) ( )

( ) ( ) ( )

*

*

, ;

, .

Iu x y u y X x

v x y v y X x

=

=
 

After substituting in (10) we obtain: 

 
* '' '' '';Eu X Y X YX= −  

( )* ' '' '' ;E v X YX Y X= −  

( ) ( )* *' ' ' 2 1 ' '.E u X v X Y X + = − +
 

   (11) 

 

Multiplying, as before, each of the relations (11) by X and integrating in the range from 

0 to l1, after transformations we obtain generalized displacements in the form 

 

          2 * 2" .Er u Y r Y= − −                (12) 

       ( )2 * 2''' 2 '.Er v Y r Y= − − +          (13) 

 

We proceed to the definition of generalized forces. Normal and shear forces are 

determined by the expressions: 
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2

2

2

";

' '.

N h hYX
x

S h hY X
x y






= =




= − = −

 

                (14) 

 

Assuming h = 1, we multiply (14) by Х and calculate integrals in the range from 0 to l1: 

 
2

2

2

";

' '.

N h hYX
x

S h hY X
x y






= =




= − = −

 

 

 

We divide each of the equalities by A, then the generalized forces take the form 

 
* 2

* 2

;

',

N r Y

S t Y

= −

= −
 

  

where 
1

1

*

0

*

0

/ ;

/ .

l

l

N NXdx A

S SXdx A

=

=





 

 

Note that the function X(x) must satisfy first of all the static and, if possible, kinematic 

boundary conditions at the longitudinal edges of the plate [12], while when bending the 

plate, the requirements for the function X(x) will be directly opposite. 

Consequently, different boundary conditions of the bend and the plane problem lead to 

the same expressions for the fundamental functions and the form of the function X(x). 

State vector of a plane problem: 

 

( )

( )

2

*
2

*

2
* 2

*
2

2

'

1
''' 2 '

1
"

r Y
N

t Y
S

P Y r Y
EV r

EU
Y r Y

r





−

−

= =  − + 

− −

.             (15) 

 

We define the fundamental orthonormal functions of the problem under different fixing 

conditions. Following V.Z. Vlasov [15], by orthonormalized fundamental functions we 

mean functions that form a unit matrix at a point 0x = . 

The solution of equation (6) depends [16] on the roots of the characteristic equation 

 

         4 2 2 42 0,k r k s− + =                            (16) 

where 

    2 4 4

1 4 .k r r s− =   −                          (17) 
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It follows from (17) that the form of the fundamental functions is determined by the 

relation between r and s, which, in turn, depends on the boundary conditions at the 

longitudinal edges. 

Using the Kolosov – Muskhelishvili analogy [17], we can establish a correspondence 

between the boundary conditions of the theory of plate bending and the boundary 

conditions of the plane problem of the theory of elasticity. 

Consider the basic conditions for fixing the edges in the direction of the y-axis. 

Option 1: s > r. The case of free edges of the longitudinal edges.  

 

1 4 ;ik  − =    

 

where 

 
2 2 2 2

; .
2 2

s r s r
 

+ −
= =  

 

Function Y has the form 

 
                 

1 1 2 2 3 3 4 4,Y C C C C=  +  +  +                (18) 

 

where 1, 2, 3, 4 ― hyperbolic trigonometric functions: 

 

1 2 3 4sin ; cos ; cos ; sin .ch y y ch y y sh y y sh y y        =  =  =  =  

 

Constants С1, С2, С3, С4 can be determined from ratio 

 

                   0 0 , 1, 2, 3, 4iC P i = = .                       (19) 

   

Column-vector 0P  contains generalized kinematic and static factors. 

We proceed to the determination of the fundamental functions of the problem.  

 

( ) ( ) ( )

 

2 2 2 2 2 22

11 2 4 12 1 32 2 2 2

4 4 4 4

13 3 1 1 3 14 42 2 2

1
; ;

2 2 2

; .
2 2 2 2

r s r r s rr
A A

s t s t

Er Er Er Er
A A

s s s

 

  

 
   

+ −+
=  −  =  + 

=  −  = −  +  = 

        (20) 

 

Option 2:  s = r. Case of simple support of longitudinal edges. 

 
2

1 4k r− =  . 

 

Function ( )Y y again taken in the form of (18), but here 

 

1 2 3 4; ; ; .ychry chry shry yshry =  =  =  =        

Option 3: s r . Case of longitudinal edges fixing. 

The characteristic equation (16) has two real and different roots: 
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2 4 4 2 4 4

1 2; .r r s r r s = + − = − −   

 

We take function ( )Y y  in the form (18), but here 

 

1 2 2 1 3 1 4 2; ; ; .sh y ch y sh y ch y    =  =  =  =                            

  

Option 4:  0.s =   

The roots of equation (16) will be real and multiple: 

 

1,2 3,4 10; ,k k r= =   

 

where 2

1

2
.r


= −


 

The expression for the function ( )Y y remains in the form (18), but here 

 

1 1 2 3 4 1; 1; ;shr y y chr y =  =  =  = .                                            

 

We proceed to the construction of the Green function. 

The most convenient form for the particular solution of a linear inhomogeneous 

differential equation with constant coefficients is the expression 

 

                          
0

( ) ( , ) ( ) ,

y

y y G y q d   =                         (21) 

 

where ( , )G y   — Green’s function, whose construction algorithm is independent of the 

boundary conditions of the problem [18]. 

Consider the implementation of this algorithm for the case of free edges of the 

longitudinal edges of the plate. In our case 
0a  in main differential equation is equal to one, 

that’s why for integration constants 
1 2 3 4, , ,C C C C  we came to the system of linear algebraic 

equations 

 

                

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

0;

0;

0;

1,

y C y C y C y C

y C y C y C y C

y C y C y C y C

y C y C y C y C

+ + + =

   + + + =


   + + + =

    + + + =

                     (22) 

 

where 

1 2 3 4sin ; cos ; cos ; sin .y ch y ch y sh y sh       = = = =  

 

Solving system (22) by the Gauss method, we obtain 
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1 2 2

2 2 2

3 2 2

4 2 2

cos sin
;

2 ( )

sin cos
;

2 ( )

sin cos
;

2 ( )

cos sin
.

2 ( )

ch sh
C

ch sh
C

sh ch
C

sh ch
C

     

  

     

  

     

  

     

  

+
= +


 − +

=
+


− =

 +


− − =
 +

                     (23) 

 

Taking into account (21) and (23), for the Green's function we obtain after simple 

transformations 

 

2 2

1
( , ) [ ( )sin ( ) ( )cos ( )].

2 ( )
G y ch y y sh y y          

  
= − − − − −

+
          (24) 

 

It is easy to verify that function (24) has all the properties characteristic of the Green 

function [18]. 

A comparison of (24) with the expressions of fundamental functions obtained earlier 

shows that 

 
            

13( , ) ( ).G y A y = − −                              (25) 

 

From the procedure for compiling the biharmonic equation, the expression for external 

loads reduced to the median plane of the plate follows: 

 

( )
2 0 02 0 0

2 2
, ,

y yx x
q qq q

q x y dx dy
y x x y

 
  

= + − −
       

 

where 0

xq  and 0

yq  they are, generally speaking, the sums of volumetric (applied inside the 

contour of the plate) and surface (applied along the contour) loads in the directions of the x 

and y axes, respectively. 

In most cases, there are no volumetric loads, therefore in the future we will mean by 
0

xq and 0

yq  only contour loads. In general case of loading 0

xq  and 0

yq  — this is a set of eight 

load groups — two on each side of the circuit (normal and tangential). 

Expressions of all acting loads can be written using the Heaviside H-function and the 

Dirac -function, as shown in [12]. 

As an example, consider a rigidly clamped square plate with free longitudinal (along the 

axis oy ) edges (Fig. 1). Material — steel (modulus of elasticity 52 10E MПа=  , Poisson’s 

ratio 0,3 = ), plate thickness — 0,01 m. Let us consider the formation of the equation of 

the boundary value problem of the NA BEM. The solution of the biharmonic equation (2) is 

reduced to the solution of an equation of the form. 

 

11 12 13 14 11

21 22 23 24 21

31 32 33 34 31

41 42 43 44 41

( )( ) (0)

( )( ) (0)
.

( )( ) (0)

( )( ) (0)

A A A A B yN y N

A A A A B yS y S

A A A A B yEv y Ev

A A A A B yEu y Eu

= +  

 

8

E3S Web of Conferences 211, 01021 (2020)
The 1st JESSD Symposium 2020

https://doi.org/10.1051/e3sconf/202021101021



To construct the Eri stress function ( , )x y , it is necessary to take into account the 

boundary conditions for the plate in accordance with Fig. 1. In the direction of the axis ox 

(free edges), the boundary conditions are taken into account by the function ( )X x , and in 

the direction of the axis oy (one edge is rigidly clamped, the other is free), the boundary 

conditions will be satisfied by a function 2( ) ( ),N y r Y y= − that is defined as follows: 

 

11 12 13 14 11( ) ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ).N y A y N A y S A y Ev A y Eu B y= + + + +  

 

For the conditions under consideration, we have 

 

11(0) 0; (0) 0; ( ) 0.Ev Eu B y= = =  

 

Fig. 1. Calculation example. 

Other initial parameters can be determined from the equation of the boundary value 

problem. The latter is formed taking into account the initial and final boundary parameters: 

 

11 12 11

21 22 21

31 32 31

41 42 41

0 0 ( )(0) ( )

0 0 ( )(0) ( )
.

1 0 ( )(0); ( ) ( )

0 1 ( )(0); ( ) ( )

A A B lN N l

A A B lS S l

A A B lEv Ev l Ev l

A A B lEu Eu l Eu l

− = −
−

−

                   (26) 

 

In these transformations, columns 3 and 4 must be zeroed out (this takes into account 

zero initial parameters), and compensating elements should be put in place of the released 

matrix ( )A l  elements. The solution of equation (26) allows us to determine nonzero initial 

parameters (0)N  and (0)S . Then the stress function takes the form 
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 11 122

1
( , ) ( ) (0) ( ) (0) ( ).x y A y N A y S X x

r
 = − +                  (27) 

 

Next, you can determine all the other parameters of the stress-strain state of the plate. 

The calculation program in Scilab [19], compiled in accordance with the developed 

algorithm, is implemented for the case of free longitudinal edges; other boundary 

conditions on the longitudinal edges of the plate lead to the replacement of the fundamental 

functions and the load vector, and the change in the conditions for fixing the transverse 

edges is taken into account by the corresponding boundary-value problem of determining 

the function. In this case, the form of the main BEM equation and the calculation algorithm 

remain unchanged. 

Calculated values of normal stresses ( , )x y  and displacements ( , )v x y are given in the 

Tables 1 and 2. 

Let us consider the solution to this problem in the ANSYS program. We accept the 

same initial data as in the calculation by the boundary element method. 

To approximate the model, a 4-node finite element was used. In the initial calculation, 

the surface of the plate was divided into 400 finite elements. In the future, for the 

convenience of comparing the calculation results in ANSYS with the calculations using the 

algorithm of the NA BEM and with the solution of A.V. Aleksandrov [14], a larger finite 

element mesh (100 elements) was adopted. Comparison of these two calculation options in 

ANSYS shows almost complete identity of the results and, therefore, the enlargement of the 

grid can be considered correct. 

There are obtained the stress fields (Fig. 2) and displacements along axis оу (Fig. 3). 1

MN

MX

X

Y

Z

                                                                                
-101410

-89196
-76981

-64767
-52553

-40338
-28124

-15910
-3696

8519

OCT 18 2006

11:40:04

NODAL SOLUTION

SUB =1

TIME=1

SY       (AVG)

RSYS=0

DMX =.558E-06

SMN =-101410

SMX =8519

 

1

MN

MX X

Y

Z

                                                                                
-.558E-06

-.496E-06
-.434E-06

-.372E-06
-.310E-06

-.248E-06
-.186E-06

-.124E-06
-.620E-07

0

OCT 18 2006

11:39:43

NODAL SOLUTION

SUB =1

TIME=1

UY       (AVG)

RSYS=0

DMX =.558E-06

SMN =-.558E-06

 

Fig. 2. Stresses along оу axis. Fig. 3. Displacement along оу axis. 

In [14], a method for solving a planar problem is considered, which is based on the 

reduction of two-dimensional (and three-dimensional) problems to one-dimensional using 

the Kantorovich – Vlasov method. 

The limitation of the algorithm for solving the flat problem developed here (that is, in 

[14]) is that the solution is obtained only for one version of the boundary conditions and is 

not universal. The numerical values of stresses and displacements, especially in the regions 

of the plate located near the longitudinal edges, also raise certain doubts about the accuracy 

of the results. 
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The loading diagram of a square plate, boundary conditions, and stress and 

displacement diagrams obtained in [14] by this method are shown in Fig. 4. Note that we 

calculated the stresses at x = 0, x = 0.2m, etc. in accordance with the algorithm described in 

[14], since in Fig. 4 voltages are given for slightly different values of the x coordinate. 

 
Fig. 4. Stresses and displacements by A.V. Aleksandrov [14]. 

Comparison of stresses and displacements calculated by the numerical-analytical 

method of boundary elements, the finite element method and the obtained 

A.V. Aleksandrov [14], is given in Tables 1 and 2. 
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Table 1. Normal stresses comparison y , MPA. 

 NA BEM FEM Aleksandrov solution [14] 

х у = 0,4 у = 0,8 у = 1,2 у = 0,4 у = 0,8 у = 1,2 у = 0,4 у = 0,8 у = 1,2 

0,0 1,3701 -25,7672 -41,5316 1,7067 -26,622 -42,066 1,09 -27,22 -41,78 

0,2 -22,5804 -37,5958 -47,5903 -24,298 -38,444 -47,698 -20,33 -37,58 -47,53 

0,4 -52,1359 -51,3737 -50,3471 -53,202 -52,259 -50,375 -50,67 -51,64 -50,34 

0,6 -78,6468 -61,7784 -53,5555 -79,089 -62,700 -53,501 -77,48 -61,77 -53,68 

0,8 -88,4328 -66,2898 -54,5779 -88,529 -66,570 -54,787 -88,32 -66,31 -55,32 

1,0 -78,6468 -61,7784 -53,5555 -79,089 -62,700 -53,501 -77,48 -61,77 -53,68 

1,2 -52,1359 -51,3737 -50,3471 -53,202 -52,259 -50,375 -50,67 -51,64 -50,34 

1,4 -22,5804 -37,5958 -47,5903 -24,298 -38,444 -47,698 -20,33 -37,58 -47,53 

1,6 1,3701 -25,7672 -41,5316 1,7067 -26,622 -42,066 1,09 -27,22 -41,78 

 
Table 2. Displacement comparison V ∙106, m. 

 NA BEM FEM Aleksandrov solution [14] 

х у = 0,4 у = 0,8 у = 1,2 у = 0,4 у = 0,8 у = 1,2 у = 0,4 у = 0,8 у = 1,2 

0,0 -0,2025 -0,1770 -0,1045 -0,20348 -0,17752 -0,10569 -0,2028 -0,1752 -0,1041 

0,2 -0,2451 -0,1805 -0,0932 -0,24830 -0,18151 -0,09435 -0,2449 -0,1806 -0,0942 

0,4 -0,3035 -0,1985 -0,0925 -0,30690 -0,19773 -0,09290 -0,3057 -0,1981 -0,0939 

0,6 -0,3572 -0,2143 -0,0968 -0,35747 -0,21365 -0,09586 -0,3591 -0,2152 -0,0970 

0,8 -0,3791 -0,2211 -0,0983 -0,37794 -0,22007 -0,09727 -0,3789 -0,2222 -0,0986 

1,0 -0,3572 -0,2143 -0,0968 -0,35747 -0,21365 -0,09586 -0,3591 -0,2152 -0,0970 

1,2 -0,3035 -0,1985 -0,0925 -0,30690 -0,19773 -0,09290 -0,3057 -0,1981 -0,0939 

1,4 -0,2451 -0,1805 -0,0932 -0,24830 -0,18151 -0,09435 -0,2449 -0,1806 -0,0942 

1,6 -0,2025 -0,1770 -0,1045 -0,20348 -0,17752 -0,10569 -0,2028 -0,1752 -0,1041 
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2 Conclusions 
Thus, an approach has been developed to solve the biharmonic equation of the plane 

problem of the theory of elasticity by the numerical-analytical method of boundary 

elements. The solution covers all boundary conditions for which systems of fundamental 

orthonormal functions and the Green function are constructed. 

A numerical example of solving a plane problem by the boundary element method for a 

rectangular plate is considered. The results are compared with the data of finite element 

analysis in the ANSYS program and those obtained by A.V. Aleksandrov [14]. 

Tables 1 and 2 analysis shows that the results of the calculation by the boundary 

element method are in good agreement with the results of calculations in ANSYS and with 

the data given in [14]. 
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