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Abstract. The work is devoted to determining the natural frequencies and 

vibration modes of a circular arch using the numerical-analytical boundary 

elements method. A differential equation of the natural vibrations of the arch 

is obtained, a complete system of its fundamental solutions is determined, a 

transcendental frequency equation is constructed, the arch is calculated 

based on the obtained analytical dependencies, and the results are compared 

with the results of finite element analysis. For 10 possible combinations of 

the roots of the equation of the characteristic equation, 360 fundamental 

functions are calculated. An example of calculating a circular arch for free 

vibrations by the method of the authors is considered. The search for the 

roots of the transcendental frequency equation can be carried out by the 

method of successive approximations, using any programming environment. 

Here used MATLAB. As a result of the calculation, the first five frequencies 

of the natural vibrations of the arch were obtained. Their comparison with 

those calculated in the ANSYS program shows that the spectrum of natural 

frequencies calculated by the boundary element method is slightly lower 

(except for the first frequency) than the spectrum calculated by the finite 

element method, which indicates greater reliability of the results of the 

boundary element method. 

1 Introduction 

Arch structures are used in various fields, such as shipbuilding, aviation, and mechanical 

engineering. It is possible to name the blades of turbomachines, tires, various aircraft 

structures, circumferential stiffeners for shell structures. The appearance of new materials 

has stimulated the use of arch structures in new fields, such as medicine, bioengineering, 

vibration diagnostics, or the production of nanocomposites. However, arches have been 

especially widely used in construction, since their use makes it possible to cover long spans.  

The first began to erect arches of large size Romans (world-renowned aqueduct Pon-du-

Gar). Well-known old wooden and stone arch bridges in Russia, France, China and many 

other countries. Modern construction tends to increase the use of steel arches ― Abu Dhabi 

Airport Terminal, Mike O'Callaghan-Pete Tillman Memorial Bridge in America, Charlie's 

Rail Tunnel in the UK, a new bridge over Ob in Russia and many other unique structures [1]. 
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In the technical literature, the issues of statics and stability of arches are quite fully covered, 

but there are not enough studies about the vibrations of arches. In Russian-language literature, 

one of the first and most famous is the work of E.S. Sorokin [2], who determined the vibration 

frequencies of different types of arches by the Ritz method, and then tested the obtained 

values experimentally. A.B. Morgaevsky [3] obtained the frequency equations of symmetric 

and inversely symmetric vibrations, for the case when the arch is loaded with radial load. In 

the following years, there were no significant works on this subject published in Russian or 

Ukrainian. Foreign literature on the dynamics of rings, arches, arch systems, by contrast, is 

quite large. The systematization of this literature based on the analysis of more than 400 

papers was performed by P. Chidamparam and A.W. Leissa [4]. Most publications in recent 

decades are related to the use of numerical methods, mainly the finite element method, with 

the development of a new finite element, or through the use of numerous engineering 

calculation programs [5-10]. Without diminishing the usefulness of such calculations, it 

should be noted that they still need verification. Here, too, in our opinion, the application of 

the numerical-analytical boundary elements method (NA BEM), the main provisions of 

which are set out in [11-14], is quite effective. 

 

2 Method 

The purpose of this work is to determine the natural frequencies and vibrations of a circular 

arch by the numerical-analytical boundary elements method. To achieve this goal, it is 

necessary to obtain the differential equation of the eigen vibrations of the arch, determine the 

complete system of its fundamental solutions, perform the calculations of the arch based on 

the obtained analytical dependencies and compare the results with the results of finite element 

analysis. 

3 Results and discussion 

The algorithm of application of NA BEM can be divided into two components: "analytical" 

and "numerical". The first of these is to obtain the analytical expressions of fundamental 

orthonormal functions, the Green function and the vector of external loads (which in this case 

will be zero) for all possible roots of the characteristic equation corresponding to the 

differential equation of the problem [11-14]. After certain transformations of the fundamental 

equation of the NA BEM [11], we obtain a system of algebraic equations that is solved 

numerically, and then we can determine the searched values, in this case, the natural 

frequencies and forms of vibrations.  

Consider the free oscillations of a circular arch of constant cross-section drawn along the 

arc of a circle of radius (Fig. 1). 
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Fig. 1. Circular arch of constant cross-section. 

Equilibrium equations have the form [15] 
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where   ― the circumferential displacement component, u ― radial, v ― the angular 

coordinate of the section. 

We differentiate (1) by   and sum with (2): 
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Taking into account that 
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we bring (3) to the form 
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From the condition of non-stretching the axis of the arch follows 

 
2

2

u v u
v

  

  
= −  =−

  
 

 

then (4) will be written in a form: 
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or 
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We will look for a solution (5) in the form 
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Let's present the state vector for the arch in the form 
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The first four components of the vector (7) determine the bend of the arch, and the last 

two components ― stretching-compression. 

We rewrite (6) by grouping the coefficients for the second derivative of the function:   
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The corresponding characteristic equation: 
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where 
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The solution of equation (8) will depend on the roots of characteristic equation (9). 

Consider all the possible cases here. From the mathematical point of view, ten cases are 

possible when solving equation (9); we group them into two groups: 

I.   One root of the equation (9) ―
1 0t  , and for other two there are possible options: 

(1) two complex conjugate roots: 2,3 ;t i =   

(2) two positive different: 
2 30; 0t t  ; 

(3) two negative different: 
2 30; 0t t  ; 

(4) one positive, the other ― negative: 
2 30; 0t t  ; 

(5) two positive equal: 
2 3 0t t=  ; 

(6) two negative equal: 
2 3 0t t=  . 

II.   One root of the equation (9) ― 
1 0t  ; and for other two there are possible options: 

(7) two complex conjugate roots: 2,3 ;t i =   

(8) two positive different: 
2 30; 0t t  ; 

(9) two positive equal: 
2 3 0t t=  ; 

(10) two negative equal: 
2 3 0t t=  .  

Each root of the characteristic equation gives rise to one private solution of the linear 

differential equation, and for the construction of the fundamental system of solutions it is 

necessary to consider in particular the cases of complex roots and cases of multiple roots of 

the characteristic equation, at that: 

• each simple (one-time) real root k in the general solution is matched by the addition of 

the form ( )kCe C shk chk  = + ; 

• each pair of the simple complex conjugate roots 
1 2,k i k i   = + = −  in general 

solution is matched by the addition of the form ( )1 2cos sine C C  + ; 

• each r -multiple real root k  in general solution is matched by the addition of the form 

( )1
1 2 ...k r

re C C C   −+ + + . 

Write the fundamental system of solutions for option (2) of the roots of the characteristic 

equation: 
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General form of the solution: 

 

( ) 51 1 2 1 3 1 4 2 3 6 4
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where 
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The components of the state vector (7) have the form: 
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As an expression for N  in (7) we use the equilibrium equation: 
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As a rule, ( ) 0yq  =  at 0 =  (the exception is when in cross section 0 =  the 

concentrated force is applied, which is quite rare in practice), so we will start from the ratio: 
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Constant 1 6C C  we will define from the matrix relation: 
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Kinematic and static factors of state vector (7) are defined in the form: 
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Substituting 0 =  into (10) - (15), we get: 

0 1t  2t  0 3t  0 
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It follows from (16) that the system of six algebraic equations for determining constants 

splits 
1 6C C  into two independent systems of three equations in each: 
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As a result of solution (17) and (18) we find: 
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After calculating the constants 
1 6C C  we can calculate all the fundamental functions of 

the problem for the considered variant of the roots of the characteristic equation (9). For 

example, for displacement ( )v   we have: 

 

( ) 11 0 12 0 13 0 14 0 15 0 16 0
.v u A v A A M A Q A u A N = = + + + + +  
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Similarly, the other 30 fundamental functions for this variant of the roots of the 

characteristic equation (9) are determined. For all the above 10 variants of the roots of 

equation (9), 360 fundamental functions are calculated. 

Now, following the usual algorithm of boundary element solution [11], we can determine 

all the parameters of the state vector (7). 

Consider an example of calculating a circular arch for free vibrations by the method of 

boundary elements. With respect to the calculation scheme (Fig. 2), the solution of the NA 

BEM equation for the boundary value problem for the eigen vibrations of the arch by the 

boundary element method takes the form: 

      

 

 

− 

 

= 0.     (19) 

  13A  
14A   16A  

(0) 0;EIv =  

( )M   
( ) 0EIv  =  

  23A  24A   26A  
(0) 0;EI =  

( )Q   
( ) 0EI  =  

-1  33A  
34A   36A  (0)M  ( )M   

 -1 43A  44A   46A  (0)Q  ( )Q   

  53A  
54A   56A  

(0) 0;EIu =  

( )N   
( ) 0EIu  =  

  63A  64A  -1 66A  (0)N  ( )N   
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Fig. 2. Example of arch calculation. 

Since at the eigen vibrations the boundary parameters vector 
*
(0, ) 0,X    equation 

(19) have non-zero solutions at condition 

 

*
( , ) 0.A   =                                                           (20) 

 

Equation (20) will be the transcendental frequency equation of the BEM for the arch (Fig. 

2). The roots of this equation are the frequencies of the natural vibrations of the arch. Root 

searches can be done using sequential approximation using any programming environment. 

As a result of the calculation, the frequencies of the natural vibrations of the arch were 

obtained. The number of frequencies that can be calculated can be any. 

 

 

Fig. 3. Determination of the second frequency of vibration. 

Frequency spectrum is determined by plotting the frequency determinant of frequency; 

the points of intersection of this graph with the horizontal axis are natural frequencies. Each 
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frequency can be calculated with almost any accuracy. As an example, Fig. 3 shows the 

process of calculating the second frequency (the program is implemented in MATLAB). Now 

for each frequency it is possible to determine the parameters of the state vector of the arch 

by the expressions above. A comparison of the first five natural frequencies determined by 

the NA BEM algorithm with those calculated in ANSYS is given in Table 1. 

Table 1. NA BEM and FEM results comparison. 

Frequency 

number 
BEM, s-1 FEM, s-1 Discrepacy, % 

1 65,625 65,069 0,85 

2 106,080 106,618 0,51 

3 206,819 208,119 0,62 

4 271,575 274,559 1,09 

5 341,290 345,714 1,28 

4 Conclusion 

The analysis of the Table 1 shows that the spectrum of natural frequencies calculated by the 

boundary element method is slightly lower (except for the first frequency) than the spectrum 

calculated by the finite element method, which indicates a greater likelihood of the NA BEM 

results. 

When calculating a particular arch system, the parameter z in (9) can be calculated with 

the precision with which the frequency of natural vibrations is calculated. Therefore, it is 

necessary to set the frequency change interval, for example, (0, 2000) s-1, after which, in the 

course of implementing the calculation program in any programming language, an automatic 

transition to the calculation of fundamental functions corresponding to the roots of 

characteristic equation (9) is made. 

The program that realizes the calculation of the arch system by the boundary element 

method in accordance with the described methodology, is quite voluminous, but it is 

connected with a large number of arithmetic operators and logical branches. In fact, the cost 

of computing resources is minimal, because we have to solve a system of only twelve 

algebraic equations, which is significantly less than using the finite element method. 
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