
 
 

 

Predictive analysis of two bijectively related 
families of functions in L2, which are expressed 
as tuple pairs 
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Abstract. This article proposes a method of function image prediction 
calculation by its preimage. This method is based on regression analysis of 

function image and preimage pairs in L2. The prediction model application 
procedure is described. The algorithm pseudocod are given. 

1.  Introduction 

The machine learning is impotent tool of science data research [1-3]. It lets solve many 

problems, such as prognoses problem [2, 4, 5]. Prognosing is making by regression model 

constructing [3, 5, 6, 7]. The objects number must be significantly more than the attributes 

number [8], otherwise re-education effect is originating [8,[9] and model prediction power 

goes down [2, 3, 10]. 
Insufficient data situation often appears in practice (if it’s getting associate with technical 

and another difficulties), then regression model isn’t applied. Then different sampling and 

composition methods are used [11-14]. One of these methods is proposed in this article. 

2.  Problem statement 

Let 

𝑓𝑖(𝑠) ∈ 𝐿
2[𝑎, 𝑏], 𝑔𝑖(𝑡) ∈ 𝐿

2[𝑐, 𝑑],   𝑖 = 0, 𝑛 

be two function families.  
Let  

𝛩: 𝐿2[𝑎, 𝑏] ⟶ 𝐿2[𝑐, 𝑑] 

be a continuous map, such that 𝛩(𝑓𝑖) = 𝑔𝑖. Suppose we know values of the function 𝑓𝑖(𝑠) 

at the points 𝑠𝑖𝑗 , 𝑗 = 0, 𝑝𝑖, such that: 

𝑠𝑖𝑗 < 𝑠𝑖,𝑗+1,   𝑖 = 0, 𝑛, 𝑗 = 0, 𝑝𝑖 − 1, 
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𝑠𝑖0 = 𝑎,     𝑠𝑖𝑝𝑖 = 𝑏, 𝑖 = 0, 𝑛 

and values of the function 𝑔𝑖(𝑡) at the points 𝑡𝑖𝑘, 𝑘 = 0, 𝑞𝑖, such that: 

𝑡𝑖𝑘 < 𝑡𝑖,𝑘+1, 𝑖 = 0, 𝑛, 𝑘 = 0, 𝑞𝑖 − 1, 

𝑡𝑖0 = 𝑐,       𝑡𝑖𝑞𝑖 = 𝑑, 𝑖 = 0, 𝑛 

Denote 𝑓𝑖(𝑠𝑖𝑗) = 𝑓𝑖𝑗 , 𝑔𝑖(𝑡𝑖𝑘) = 𝑔𝑖𝑘. We have tuple pairs (𝑠𝑖𝑗 , 𝑓𝑖𝑗), (𝑡𝑖𝑘 , 𝑔𝑖𝑘), and map 𝛩 

induces bijection 

𝑀Θ: (𝑠𝑖𝑗 , 𝑓𝑖𝑗) ⟶ (𝑡𝑖𝑘 , 𝑔𝑖𝑘), 𝑖 = 0, 𝑛. 

Suppose we have another function 𝑓 and we know tuple pairs 

(𝑠𝑗 , 𝑓𝑗), 𝑗 = 0, 𝑝. 

Our problem is to obtain predictive expression of function 𝑔 = 𝛩(𝑓) as tuple pairs 

(𝑡𝑘 , 𝑔𝑘), 𝑘 = 0, 𝑞. 

3.  Data preparing 

Important stage of data preparing is its normalization. We normalize tuple pairs 

𝑠𝑖𝑗
∗ =

𝑠𝑖𝑗 − 𝑎

𝑏 − 𝑎
,                 𝑡𝑖𝑘

∗ =
𝑡𝑖𝑘 − 𝑐

𝑑 − 𝑐
. 

Now we get 

𝑠𝑖𝑗
∗ ∈ [0,1],          𝑡𝑖𝑘

∗ ∈ [0,1]. 

We create grids for variables 𝑠∗ =
𝑠−𝑎

𝑏−𝑎
 and 𝑡∗ =

t−𝑐

𝑑−𝑐
. By 𝜁𝑙, 𝑙 = 0,𝑚𝜁  and 𝜂𝑟, 𝑟 = 0,𝑚𝜂 

denote the values of variables 𝑠∗ and 𝑡∗ at grid nodes. Values of 𝜁𝑙 and 𝜂𝑟 depend on type of 

the grid. For uniform grid we have 

𝜁𝑙 =
𝑙

𝑚𝜁

,      𝑙 = 0,𝑚𝜁 ,      𝜂𝑟 =
𝑟

𝑚𝜂

,      𝑟 = 0,𝑚𝜂. 

If the grid is denser at point 0, we have  

𝜁𝑙 = (
𝑙

𝑚𝜁

)

2

,        𝑙 = 0,𝑚𝜁 ,      𝜂𝑟 = (
𝑟

𝑚𝜂

)

2

,     𝑟 = 0,𝑚𝜂. 

If the grid is denser at point 1, we have  

𝜁𝑗 = 1 − (
𝑙

𝑚𝜁

− 1)

2

,         𝑙 = 0,𝑚𝜁 ,      𝜂𝑟 = 1 − (
𝑟

𝑚𝜂

− 1)

2

,      𝑟 = 0,𝑚𝜂 . 

There are many types of grids, that are denser at some points from [0,1]. In any case we 
have two grids, such that 
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𝜁𝑙 ∈ [0,1],     𝜂𝑟 ∈ [0,1]. 

After the grids were chosen, we complete a definition of values of function 𝑓 and function 

𝑔 at the grid nodes. 

At the boundary nodes we have 

𝑓𝑖(𝜁0) = 𝑓𝑖,0, 𝑓𝑖 (𝜁𝑚𝜁
) = 𝑓𝑖,𝑚𝜁

,     𝑖 = 0, 𝑛, 

𝑔𝑖(𝜂0) = 𝑔𝑖,0, 𝑔𝑖 (𝜂𝑚𝜂
) = 𝑔𝑖,𝑚𝜂

,     𝑖 = 0, 𝑛. 

At the inner nodes we use the following rule. 

We fix number 𝑖 and study all values of number 𝑙. If ∀ 𝑗, 𝜁𝑙 ≠ 𝑠𝑖𝑗  then unique number 𝑗0 

exists, such that 𝑠𝑖,𝑗0 < 𝜁𝑙 < 𝑠𝑖,𝑗0+1. In this case we apply linear interpolation 

𝑓𝑖(𝜁𝑙) = (𝑓𝑖,𝑗0+1 − 𝑓𝑖,𝑗0)
𝜁𝑙 − 𝑠𝑖,𝑗0

∗

𝑠𝑖,𝑗0+1
∗ − 𝑠𝑖,𝑗0

∗ + 𝑓𝑖,𝑗0 . 

Otherwise there is number 𝑗0, such that 𝜁𝑙 = 𝑠𝑖,𝑗0
∗ , in this case we have 

𝑓𝑖(𝜁𝑙) = 𝑓𝑖,𝑗0 . 

Similarly, we do calculation for function 𝑔. We fix number 𝑖 and study all values of 

number 𝑟. If ∀ 𝑘, 𝜂𝑟 ≠ 𝑡𝑖𝑘  then unique number 𝑘0 exists, such that 𝑡𝑖,𝑘0 < 𝜂𝑟 < 𝑡𝑖,𝑘0+1. In 

this case we apply linear interpolation 

𝑔𝑖(𝜂𝑟) = (𝑔𝑖,𝑘0+1 − 𝑔𝑖,𝑘0)
𝜂𝑟 − 𝑡𝑖,𝑘0

∗

𝑡𝑖,𝑘0+1
∗ − 𝑡𝑖,𝑘0

∗ + 𝑔𝑖,𝑘0 . 

Otherwise there is number 𝑘0, such that 𝜂𝑟 = 𝑡𝑖,𝑘0
∗ , in this case we have 

𝑔𝑖(𝜂𝑟) = 𝑔𝑖,𝑘0 . 

We do this procedure for all 𝑖,  𝑖 = 0, 𝑛. 
Note, that we use linear interpolation to simplify narrative. We can use any interpolation 

[3, 15, 16]. 

Now we have corteges put in the grids: 

𝑓0(𝜁0) 𝑓0(𝜁1) … 𝑓0(𝜁𝑚𝜁
)

𝑓1(𝜁0) 𝑓1(𝜁1) … 𝑓1(𝜁𝑚𝜁
)

…
𝑓𝑛(𝜁0)

…
𝑓𝑛(𝜁0)

…
…

…
𝑓𝑛(𝜁𝑚𝜁

)

        

𝑔0(𝜂0) 𝑔0(𝜂1) … 𝑔0(𝜂𝑚𝜂
)

𝑔1(𝜂0) 𝑔1(𝜂1) … 𝑔1(𝜂𝑚𝜂
)

…
𝑔𝑛(𝜂0)

…
𝑔𝑛(𝜂1)

…
…

…
𝑔𝑛(𝜂𝑚𝜂

)

 

Then we do normalization of the grid nodes. For this we denote normalizing value of 

functions 𝑓𝑖 at points 𝜁𝑙 by 𝜑𝑖𝑙. Similarly, we denote normalizing value of functions 𝑔𝑖 at the 

points 𝜂𝑟 by 𝜓𝑖𝑟. We have 

𝜑𝑖𝑙 =
𝑓𝑖(𝜁𝑙) − min

𝑖∈ℤ∩[0,𝑛]
𝑓𝑖(𝜁𝑙)

max
𝑖∈ℤ∩[0,𝑛]

𝑓𝑖(𝜁𝑙) − min
𝑖∈ℤ∩[0,𝑛]

𝑓𝑖(𝜁𝑙)
,   𝜓𝑖𝑟 =

𝑔𝑖(𝜂𝑟) − min
𝑖∈ℤ∩[0,𝑛]

𝑔𝑖(𝜂𝑟)

max
𝑖∈ℤ∩[0,𝑛]

𝑔𝑖(𝜂𝑟) − min
𝑖∈ℤ∩[0,𝑛]

𝑔𝑖(𝜂𝑟)
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Finally, we have two data sets 

𝜑00 𝜑01
… 𝜑0𝑚𝜁

𝜑10 𝜑11 … 𝜑1𝑚𝜁
…
𝜑𝑛0

…
𝜑𝑛1

…
…

…
𝜑𝑛𝑚𝜁

                 

𝜓00 𝜓01 … 𝜓0𝑚𝜁

𝜓10 𝜓11 … 𝜓1𝑚𝜁
…
𝜓𝑛0

…
𝜓𝑛1

…
…

…
𝜓𝑛𝑚𝜁

, 

such that 

𝜑𝑖𝑙 ∈ [0,1],     𝜓𝑖𝑟 ∈ [0,1]. 

Further, we will deal with two matrixes 

Φ = (𝜑𝑖𝑙)𝑖=0 𝑙=0
𝑛      𝑚𝜁

,       Ψ = (𝜓𝑖𝑟)𝑖=0 𝑟=0
𝑛      𝑚𝜂

 . 

Rows of matrix Φ are normalized values of functions 𝑓𝑖 at the grid nodes 𝜁𝑙. Rows of 

matrix Ψ are normalized values of functions 𝑔𝑖 at grid nodes 𝜂𝑟. The map 𝛩 induces bijection 

between i-th row of Φ and i-th row of Ψ. 

4. Model parameters 

We insert column of ones in the end of Φ and denote obtained matrix by Φ̃. Let 𝐼 and 𝐽 be 

multi-indexes. Let Φ𝐼𝐽 be matrix, that consists of I-th rows and J-th columns elements of Φ̃. 

Let Ψ𝐼 be matrix, that consists of I-th rows elements of Ψ. By Ψ𝐼𝑟 denote r-th column of Ψ𝐼. 
Definition 1. We shall say that, partial regression problem is overdetermined system 

of equations 

Φ𝐼𝐽 ∙ 𝛼 = Ψ𝐼𝑟 . 

Note. If that system is determined or underdetermined, then model is overtraining. In 

order that the above system to be overdetermined it is necessary to have inequality 

dim𝐼 > dim𝐽 + 1. 

Definition 2. For partial regression problem we shall say, that regression dimension is 

dim𝐽. 
Let 𝜑𝑖and 𝜑𝑖′be two preimage functions, those are expressed as tuple pairs 𝜑𝑖𝑙, 𝜁𝑙 and 

𝜑𝑖′𝑙 , 𝜁𝑙. By definition put 

𝑑(𝜑𝑖 , 𝜑𝑖′) = (∑(
𝜑𝑖,𝑙 +𝜑𝑖,𝑙−1

2
−
𝜑𝑖′,𝑙 +𝜑𝑖′,𝑙−1

2
)
2

(𝜁𝑙 − 𝜁𝑙−1)

𝑚𝜁

𝑙=1

)

1/2

. 

Definition 3. The number 𝑑(𝜑𝑖 , 𝜑𝑖′) is called distance between functions 𝜑𝑖 and 𝜑𝑖′. 
For any given function 𝜑𝑖 we can create nondecreasing sequence of distances 

𝑑(𝜑𝑖 , 𝜑𝑖1) ≤ 𝑑(𝜑𝑖 , 𝜑𝑖2) ≤ ⋯ ≤ 𝑑(𝜑𝑖 , 𝜑𝑖𝑘𝑁𝑁) ≤ ⋯ ≤ 𝑑 (𝜑𝑖 , 𝜑𝑖𝑚𝜁
), 

where 𝑘𝑁𝑁 is number of nearest to 𝜑𝑖 functions. 

Definition 4. We shall say that, multi-index of the nearest neighbors of 𝜑𝑖 is ordered 

set  

4

E3S Web of Conferences 224, 01007 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401007



 
 

 

𝐼𝜑𝑖 = {𝑖1, 𝑖2, … , 𝑖𝑟𝑁𝑁  }. 

For model training we will solve series of partial regression problems for multi-index of 

the nearest neighbors: 

Φ𝐼𝜑𝑖
𝐽 ∙ 𝛼 = Ψ𝐼𝜑𝑖𝑟

. 

We number these problems by multi-index 𝐽. Therefor we must choose multi-index 𝐽 
iteration method. 

Definition 5. One of these methods is complete enumeration of all multi-index with 

fixed length 

𝐽 = {𝑖1, 𝑖2, … , 𝑖dim 𝐽}. 

The number of these multi-indexes is great. We can get it as 

(
𝑚𝜁

dim𝐽
) =

𝑚𝜁 !

(dim𝐽)! (𝑚𝜁 − dim𝐽)!
. 

Definition 6. Another multi-index iteration method is enumerating in the ring ℤ𝒑. For 

this method dimension dim𝐽 must be devisor of 𝑚𝜁. We choose multi-indexes by following 

rule 

𝐽 = {𝑖1, 𝑖2, … , 𝑖dim 𝐽} =

{
  
 

  
 0 mod (

𝑚𝜁

dim𝐽
)

1 mod (
𝑚𝜁

dim𝐽
)

…

(
𝑚𝜁

dim𝐽
− 1)

…

mod (
𝑚𝜁

dim𝐽
)

 

The number of these multi-indexes is 
𝑚𝜁

dim 𝐽
 and not great. 

There are other multi-index iteration methods. 

Finally, we have following model parameters: 1) dimension of the partial regression 

problem dim 𝐽, 2) number of the preimage function nearest neighbors 𝑘𝑁𝑁, 3) multi-index 

iteration method. 

5. Model training 

Step 0. We fix following model parameters: 𝑘𝑁𝑁, dim 𝐽, and iteration method. 

Step 1. We choose functions 𝜑𝑖 and 𝜓𝑖 and create multi-index of the nearest neighbors  

𝐼𝜑𝑖 = {𝑖1, 𝑖2, … , 𝑖𝑟𝑁𝑁  }. 

Step 2. We choose column Ψ𝐼𝑟. 
Step 3. We choose multi-index 𝐽. 
Step 4. We create partial regression problem with the multi-indexes 𝐼𝜑𝑖, 𝐽 and column 

Ψ𝐼𝑟: 

Φ𝐼𝜑𝑖
𝐽 ∙ 𝛼 = Ψ𝐼𝑟 . 
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We solve this problem and get set of numbers 𝛼1, 𝛼2, …, 𝛼dim 𝐽 and 𝛼0. We create linear 

function with these numbers 

𝜔𝑖𝐽𝑘(𝑥1, 𝑥2,… , 𝑥dim 𝐽) = 𝛼1𝑥1 + 𝛼1𝑥1 +⋯+ 𝛼1𝑥1 + 𝛼0. 

We substitute 𝜑𝑖𝑙1 , 𝜑𝑖𝑙2 ,…, 𝜑𝑖𝑙1 for 𝜔𝑖𝐽𝑟(𝑥1, 𝑥2,… , 𝑥dim 𝐽). Number 

𝜔𝑖𝐽𝑟(𝜑𝑖𝑙1 , 𝜑𝑖𝑙2 , … ,𝜑𝑖𝑙1) is called predictive value of function 𝜓𝑖 at r-th node of grid 𝜂 

𝜓𝑖𝐽𝑟
pred

= 𝜔𝑖𝐽𝑟(𝜑𝑖𝑙1 , 𝜑𝑖𝑙2 , … , 𝜑𝑖𝑙1). 

This value depends on multi-index 𝐽. 
Go to step 3. We choose new multi-index 𝐽 according to iteration method and repeat step 

4. We repeat step 4 for all multi-indexes 𝐽. 

Step 5. We average of the multi-index 𝐽 all predictive values 𝜓𝑖𝐽𝑟
pred

. We get predictive 

value of function 𝜓𝑖 at k-th node of grid 𝜂. This value doesn’t depend on multi-index 𝐽. 

Denote this value by 𝜓𝑖𝑟
pred

. We calculate error of prediction value 

𝜀𝑖𝑟 = |𝜓𝑖𝑟
pred

−𝜓𝑖𝑟|. 

Go to step 2. We choose column Ψ𝐼𝑟+1 and make steps from 3 to 5. We repeat step 2 for 

all columns of matrix Ψ. 
 

Go to step 1. We choose function 𝜑𝑖+1 and make steps from 2 to 5. We repeat step 1 for 

all rows of the matrix Φ. 

Step 6. We average of 𝑖 and 𝑟 values of prediction errors 𝜀𝑖𝑟  

𝜀𝑖 =
1

𝑚𝜂 + 1
∑𝜀𝑖𝑟

𝑚𝜂

𝑟=0

,         𝜀 =
1

𝑛 + 1
∑𝜀𝑖

𝑛

𝑖=0

. 

This value 𝜀 is averaged predictive error value of model for giving set of parameters. 

Go to step 0. We choose new values of model parameters and repeat all procedure. We 

repeat step 0 for all set of model parameters. 

Final of model training. We find set of parameters with the smallest value of error 𝜀. 
We call this set of parameters the optimal one. This is the finale of the model training. 

6. Model application 

Let we have a training model with the optimal parameters: 1) 𝑘𝑁𝑁, 2) dim𝐽 and 3) multi-

index iteration method. Let we have preimage function 𝑓 as tuple pairs 𝑓𝑗, 𝑠𝑗 , where 𝑓𝑗 =

𝑓(𝑠𝑗) and  

𝑠0 = 𝑎,       𝑠𝑝 = 𝑏,     𝑠𝑗 < 𝑠𝑗+1,     𝑗 = 0, 𝑝. 

We want to get predictive expression of image function 𝑔 = Θ(𝑓) as tuple pairs 𝑔𝑘, 𝑡𝑘, 

where 𝑔𝑘 = 𝑔(𝑡𝑘) and 

𝑡0 = 𝑐,        𝑡𝑞 = 𝑑,      𝑡𝑘 < 𝑡𝑘+1,     𝑘 = 0, 𝑞.  

We begin as we did on data preparing stage. We normalize tuple 𝑠𝑗 , linearly interpolate 

the values 𝑓(𝜁𝑙) at nodes of grid 𝜁 and normalize values 𝑓(𝜁𝑙) with considering all values 

𝑓𝑖(𝜁𝑙). As result we get tuple 𝜑0 , 𝜑1, … ,𝜑𝑚𝜁
. 

We create multi-index of nearest neighbors 𝐼𝜑, then we solve partial regression problem 

for all multi-indexes 𝐽 and columns Ψ𝐼𝜑𝑟. As result we calculate predictive values 𝜓𝐽𝑟
pred

. 
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These values we average of 𝐽 and get predictive value 𝜓𝑟
pred

 of preimage function 𝜓 at r-th 

node of grid 𝜂 for ever 𝑟. We get cortege of image function predictive values 

𝜓0
pred

, 𝜓1
pred

, … , 𝜓𝑚𝜂

pred
 on grid 𝜂. 

After these calculations we do transformation, that is invers for normalization 

transformations. For values 𝑡𝑟 we put 

𝑡𝑟 = (𝑑 − 𝑐)𝜂𝑟 + 𝑐,      𝑟 = 0,𝑚𝜂.  

For values 𝑔𝑟 we put 

𝑔𝑟 = ( max
𝑖∈ℤ∩[0,𝑛]

𝜓𝑖𝑟 − min
𝑖∈ℤ∩[0,𝑛]

𝜓𝑖𝑟)𝜓𝑟
pred

+ min
𝑖∈ℤ∩[0,𝑛]

𝜓𝑖𝑟 ,   𝑟 = 0,𝑚𝜂. 

These tuple pairs are expression of function 𝑔. 
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