Predictive analysis of two bijectively related families of functions in L^{2}, which are expressed as tuple pairs

$V G$ Mosin ${ }^{1, *}$ and A A Abashkin ${ }^{1}$
${ }^{1}$ Samara State Technical University, 244 Molodogvardeyskaya str., Samara, 443100, Russia

Abstract

This article proposes a method of function image prediction calculation by its preimage. This method is based on regression analysis of function image and preimage pairs in L^{2}. The prediction model application procedure is described. The algorithm pseudocod are given.

1. Introduction

The machine learning is impotent tool of science data research [1-3]. It lets solve many problems, such as prognoses problem [2, 4, 5]. Prognosing is making by regression model constructing $[3,5,6,7]$. The objects number must be significantly more than the attributes number [8], otherwise re-education effect is originating [8,[9] and model prediction power goes down $[2,3,10]$.

Insufficient data situation often appears in practice (if it's getting associate with technical and another difficulties), then regression model isn't applied. Then different sampling and composition methods are used [11-14]. One of these methods is proposed in this article.

2. Problem statement

Let

$$
f_{i}(s) \in L^{2}[a, b], \quad g_{i}(t) \in L^{2}[c, d], \quad i=\overline{0, n}
$$

be two function families.
Let

$$
\Theta: L^{2}[a, b] \rightarrow L^{2}[c, d]
$$

be a continuous map, such that $\Theta\left(f_{i}\right)=g_{i}$. Suppose we know values of the function $f_{i}(s)$ at the points $s_{i j}, j=\overline{0, p_{i}}$, such that:

$$
s_{i j}<s_{i, j+1}, \quad i=\overline{0, n}, \quad j=\overline{0, p_{i}-1}
$$

[^0]$$
s_{i 0}=a, \quad s_{i p_{i}}=b, \quad i=\overline{0, n}
$$
and values of the function $g_{i}(t)$ at the points $t_{i k}, k=\overline{0, q_{i}}$, such that:
\[

$$
\begin{array}{rll}
t_{i k}<t_{i, k+1}, & i=\overline{0, n}, & k=\overline{0, q_{i}-1}, \\
t_{i 0}=c, & t_{i q_{i}}=d, & i=\overline{0, n}
\end{array}
$$
\]

Denote $f_{i}\left(s_{i j}\right)=f_{i j}, g_{i}\left(t_{i k}\right)=g_{i k}$. We have tuple pairs $\left(s_{i j}, f_{i j}\right),\left(t_{i k}, g_{i k}\right)$, and map Θ induces bijection

$$
M_{\Theta}:\left(s_{i j}, f_{i j}\right) \rightarrow\left(t_{i k}, g_{i k}\right), \quad i=\overline{0, n} .
$$

Suppose we have another function f and we know tuple pairs

$$
\left(s_{j}, f_{j}\right), \quad j=\overline{0, p}
$$

Our problem is to obtain predictive expression of function $g=\Theta(f)$ as tuple pairs

$$
\left(t_{k}, g_{k}\right), \quad k=\overline{0, q}
$$

3. Data preparing

Important stage of data preparing is its normalization. We normalize tuple pairs

$$
s_{i j}^{*}=\frac{s_{i j}-a}{b-a}, \quad t_{i k}^{*}=\frac{t_{i k}-c}{d-c}
$$

Now we get

$$
s_{i j}^{*} \in[0,1], \quad t_{i k}^{*} \in[0,1] .
$$

We create grids for variables $s^{*}=\frac{s-a}{b-a}$ and $t^{*}=\frac{\mathrm{t}-c}{d-c}$. By $\zeta_{l}, l=\overline{0, m_{\zeta}}$ and $\eta_{r}, r=\overline{0, m_{\eta}}$ denote the values of variables s^{*} and t^{*} at grid nodes. Values of ζ_{l} and η_{r} depend on type of the grid. For uniform grid we have

$$
\zeta_{l}=\frac{l}{m_{\zeta}}, \quad l=\overline{0, m_{\zeta}}, \quad \eta_{r}=\frac{r}{m_{\eta}}, \quad r=\overline{0, m_{\eta}}
$$

If the grid is denser at point 0 , we have

$$
\zeta_{l}=\left(\frac{l}{m_{\zeta}}\right)^{2}, \quad l=\overline{0, m_{\zeta}}, \quad \eta_{r}=\left(\frac{r}{m_{\eta}}\right)^{2}, \quad r=\overline{0, m_{\eta}} .
$$

If the grid is denser at point 1 , we have

$$
\zeta_{j}=1-\left(\frac{l}{m_{\zeta}}-1\right)^{2}, \quad l=\overline{0, m_{\zeta}}, \quad \eta_{r}=1-\left(\frac{r}{m_{\eta}}-1\right)^{2}, \quad r=\overline{0, m_{\eta}}
$$

There are many types of grids, that are denser at some points from [0,1]. In any case we have two grids, such that

$$
\zeta_{l} \in[0,1], \quad \eta_{r} \in[0,1]
$$

After the grids were chosen, we complete a definition of values of function f and function g at the grid nodes.

At the boundary nodes we have

$$
\begin{array}{cc}
f_{i}\left(\zeta_{0}\right)=f_{i, 0}, & f_{i}\left(\zeta_{m_{\zeta}}\right)=f_{i, m_{\zeta}}, \\
i=\overline{0, n}, \\
g_{i}\left(\eta_{0}\right)=g_{i, 0}, & g_{i}\left(\eta_{m_{\eta}}\right)=g_{i, m_{\eta}},
\end{array} i=\overline{0, n} .
$$

At the inner nodes we use the following rule.
We fix number i and study all values of number l. If $\forall j, \zeta_{l} \neq s_{i j}$ then unique number j_{0} exists, such that $s_{i, j_{0}}<\zeta_{l}<s_{i, j_{0}+1}$. In this case we apply linear interpolation

$$
f_{i}\left(\zeta_{l}\right)=\left(f_{i, j_{0}+1}-f_{i, j_{0}}\right) \frac{\zeta_{l}-s_{i, j_{0}}^{*}}{s_{i, j_{0}+1}^{*}-s_{i, j_{0}}^{*}}+f_{i, j_{0}}
$$

Otherwise there is number j_{0}, such that $\zeta_{l}=s_{i, j_{0}}^{*}$, in this case we have

$$
f_{i}\left(\zeta_{l}\right)=f_{i, j_{0}}
$$

Similarly, we do calculation for function g. We fix number i and study all values of number r. If $\forall k, \eta_{r} \neq t_{i k}$ then unique number k_{0} exists, such that $t_{i, k_{0}}<\eta_{r}<t_{i, k_{0}+1}$. In this case we apply linear interpolation

$$
g_{i}\left(\eta_{r}\right)=\left(g_{i, k_{0}+1}-g_{i, k_{0}}\right) \frac{\eta_{r}-t_{i, k_{0}}^{*}}{t_{i, k_{0}+1}^{*}-t_{i, k_{0}}^{*}}+g_{i, k_{0}}
$$

Otherwise there is number k_{0}, such that $\eta_{r}=t_{i, k_{0}}^{*}$, in this case we have

$$
g_{i}\left(\eta_{r}\right)=g_{i, k_{0}}
$$

We do this procedure for all $i, i=\overline{0, n}$.
Note, that we use linear interpolation to simplify narrative. We can use any interpolation [3, 15, 16].

Now we have corteges put in the grids:

$$
\begin{array}{cccccccc}
f_{0}\left(\zeta_{0}\right) & f_{0}\left(\zeta_{1}\right) & \ldots & f_{0}\left(\zeta_{m_{\zeta}}\right) & g_{0}\left(\eta_{0}\right) & g_{0}\left(\eta_{1}\right) & \ldots & g_{0}\left(\eta_{m_{\eta}}\right) \\
f_{1}\left(\zeta_{0}\right) & f_{1}\left(\zeta_{1}\right) & \ldots & f_{1}\left(\zeta_{m_{\zeta}}\right) & g_{1}\left(\eta_{0}\right) & g_{1}\left(\eta_{1}\right) & \ldots & g_{1}\left(\eta_{m_{\eta}}\right) \\
\ldots & \ldots \\
f_{n}\left(\zeta_{0}\right) & f_{n}\left(\zeta_{0}\right) & \ldots & f_{n}\left(\zeta_{m_{\zeta}}\right) & g_{n}\left(\eta_{0}\right) & g_{n}\left(\eta_{1}\right) & \ldots & g_{n}\left(\eta_{m_{\eta}}\right)
\end{array}
$$

Then we do normalization of the grid nodes. For this we denote normalizing value of functions f_{i} at points ζ_{l} by $\varphi_{i l}$. Similarly, we denote normalizing value of functions g_{i} at the points η_{r} by $\psi_{i r}$. We have

$$
\varphi_{i l}=\frac{f_{i}\left(\zeta_{l}\right)-\min _{i \in \mathbb{Z} \cap[0, n]} f_{i}\left(\zeta_{l}\right)}{\max _{i \in \mathbb{Z} \cap[0, n]} f_{i}\left(\zeta_{l}\right)-\min _{i \in \mathbb{Z} \cap[0, n]} f_{i}\left(\zeta_{l}\right)}, \quad \psi_{i r}=\frac{g_{i}\left(\eta_{r}\right)-\min _{i \in \mathbb{Z} \cap[0, n]} g_{i}\left(\eta_{r}\right)}{\max _{i \in \mathbb{Z} \cap[0, n]} g_{i}\left(\eta_{r}\right)-\min _{i \in \mathbb{Z} \cap[0, n]} g_{i}\left(\eta_{r}\right)}
$$

Finally, we have two data sets

$$
\begin{array}{cccccccc}
\varphi_{00} & \varphi_{01} & \ldots & \varphi_{0 m_{\zeta}} & \psi_{00} & \psi_{01} & \ldots & \psi_{0 m_{\zeta}} \\
\varphi_{10} & \varphi_{11} & \ldots & \varphi_{1 m_{\zeta}} & \psi_{10} & \psi_{11} & \ldots & \psi_{1 m_{\zeta}} \\
\ldots & \ldots \\
\varphi_{n 0} & \varphi_{n 1} & \ldots & \varphi_{n m_{\zeta}} & \psi_{n 0} & \psi_{n 1} & \ldots & \psi_{n m_{\zeta}}
\end{array}
$$

such that

$$
\varphi_{i l} \in[0,1], \quad \psi_{i r} \in[0,1] .
$$

Further, we will deal with two matrixes

$$
\Phi=\left(\varphi_{i l}\right)_{i=0}^{n} m_{l=0}, \quad \Psi=\left(\psi_{i r}\right)_{i=0}^{n} m_{\eta} \quad m_{r=0} .
$$

Rows of matrix Φ are normalized values of functions f_{i} at the grid nodes ζ_{l}. Rows of matrix Ψ are normalized values of functions g_{i} at grid nodes η_{r}. The map Θ induces bijection between i-th row of Φ and i-th row of Ψ.

4. Model parameters

We insert column of ones in the end of Φ and denote obtained matrix by $\widetilde{\Phi}$. Let I and J be multi-indexes. Let $\Phi_{I J}$ be matrix, that consists of I-th rows and J-th columns elements of $\widetilde{\Phi}$. Let Ψ_{I} be matrix, that consists of I-th rows elements of Ψ. By $\Psi_{I r}$ denote r-th column of Ψ_{I}.

Definition 1. We shall say that, partial regression problem is overdetermined system of equations

$$
\Phi_{I J} \cdot \alpha=\Psi_{I r}
$$

Note. If that system is determined or underdetermined, then model is overtraining. In order that the above system to be overdetermined it is necessary to have inequality

$$
\operatorname{dim} I>\operatorname{dim} J+1
$$

Definition 2. For partial regression problem we shall say, that regression dimension is $\operatorname{dim} J$.

Let φ_{i} and φ_{i}, be two preimage functions, those are expressed as tuple pairs $\varphi_{i l}, \zeta_{l}$ and $\varphi_{i l l}, \zeta_{l}$. By definition put

$$
d\left(\varphi_{i}, \varphi_{i^{\prime}}\right)=\left(\sum_{l=1}^{m_{\zeta}}\left(\frac{\varphi_{i, l}+\varphi_{i, l-1}}{2}-\frac{\varphi_{i^{\prime}, l}+\varphi_{i^{\prime}, l-1}}{2}\right)^{2}\left(\zeta_{l}-\zeta_{l-1}\right)\right)^{1 / 2}
$$

Definition 3. The number $d\left(\varphi_{i}, \varphi_{i^{\prime}}\right)$ is called distance between functions φ_{i} and $\varphi_{i,}$. For any given function φ_{i} we can create nondecreasing sequence of distances

$$
d\left(\varphi_{i}, \varphi_{i_{1}}\right) \leq d\left(\varphi_{i}, \varphi_{i_{2}}\right) \leq \cdots \leq d\left(\varphi_{i}, \varphi_{i_{k N N}}\right) \leq \cdots \leq d\left(\varphi_{i}, \varphi_{i_{m_{\zeta}}}\right)
$$

where $k N N$ is number of nearest to φ_{i} functions.
Definition 4. We shall say that, multi-index of the nearest neighbors of φ_{i} is ordered set

$$
I_{\varphi_{i}}=\left\{i_{1}, i_{2}, \ldots, i_{r N N}\right\}
$$

For model training we will solve series of partial regression problems for multi-index of the nearest neighbors:

$$
\Phi_{I_{\varphi_{i}} J} \cdot \alpha=\Psi_{I_{\varphi_{i}}} r .
$$

We number these problems by multi-index J. Therefor we must choose multi-index J iteration method.

Definition 5. One of these methods is complete enumeration of all multi-index with fixed length

$$
J=\left\{i_{1}, i_{2}, \ldots, i_{\operatorname{dim} J}\right\}
$$

The number of these multi-indexes is great. We can get it as

$$
\binom{m_{\zeta}}{\operatorname{dim} J}=\frac{m_{\zeta}!}{(\operatorname{dim} J)!\left(m_{\zeta}-\operatorname{dim} J\right)!}
$$

Definition 6. Another multi-index iteration method is enumerating in the ring $\mathbb{Z}_{\boldsymbol{p}}$. For this method dimension $\operatorname{dim} J$ must be devisor of m_{ζ}. We choose multi-indexes by following rule

$$
J=\left\{i_{1}, i_{2}, \ldots, i_{\operatorname{dim} J}\right\}=\left\{\begin{array}{cc}
0 & \bmod \left(\frac{m_{\zeta}}{\operatorname{dim} J}\right) \\
1 & \bmod \left(\frac{m_{\zeta}}{\operatorname{dim} J}\right) \\
\left(\frac{m_{\zeta}}{\operatorname{dim} J}-1\right) & \bmod \left(\frac{m_{\zeta}}{\operatorname{dim} J}\right)
\end{array}\right.
$$

The number of these multi-indexes is $\frac{m_{\zeta}}{\operatorname{dim} J}$ and not great.
There are other multi-index iteration methods.
Finally, we have following model parameters: 1) dimension of the partial regression problem $\operatorname{dim} J, 2$) number of the preimage function nearest neighbors $k N N, 3$) multi-index iteration method.

5. Model training

Step 0. We fix following model parameters: $k N N, \operatorname{dim} J$, and iteration method.
Step 1. We choose functions φ_{i} and ψ_{i} and create multi-index of the nearest neighbors

$$
I_{\varphi_{i}}=\left\{i_{1}, i_{2}, \ldots, i_{r N N}\right\} .
$$

Step 2. We choose column $\Psi_{I r}$.
Step 3. We choose multi-index J.
Step 4. We create partial regression problem with the multi-indexes $I_{\varphi_{i}}, J$ and column $\Psi_{I r}$:

$$
\Phi_{I_{\varphi_{i} J}} \cdot \alpha=\Psi_{I r}
$$

We solve this problem and get set of numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\operatorname{dim} J}$ and α_{0}. We create linear function with these numbers

$$
\omega_{i J k}\left(x_{1}, x_{2}, \ldots, x_{\operatorname{dim} J}\right)=\alpha_{1} x_{1}+\alpha_{1} x_{1}+\cdots+\alpha_{1} x_{1}+\alpha_{0}
$$

We substitute $\varphi_{i l_{1}}, \quad \varphi_{i l_{2}}, \ldots, \varphi_{i l_{1}}$ for $\omega_{i j r}\left(x_{1}, x_{2}, \ldots, x_{\operatorname{dim} J}\right)$. Number $\omega_{i J r}\left(\varphi_{i l_{1}}, \varphi_{i l_{2}}, \ldots, \varphi_{i l_{1}}\right)$ is called predictive value of function ψ_{i} at r -th node of grid η

$$
\psi_{i J r}^{\mathrm{pred}}=\omega_{i J r}\left(\varphi_{i l_{1}}, \varphi_{i l_{2}}, \ldots, \varphi_{i l_{1}}\right)
$$

This value depends on multi-index J.
Go to step 3. We choose new multi-index J according to iteration method and repeat step 4. We repeat step 4 for all multi-indexes J.

Step 5. We average of the multi-index J all predictive values $\psi_{i j r}^{\mathrm{pred}}$. We get predictive value of function ψ_{i} at k-th node of grid η. This value doesn't depend on multi-index J. Denote this value by $\psi_{i r}^{\text {pred }}$. We calculate error of prediction value

$$
\varepsilon_{i r}=\left|\psi_{i r}^{\text {pred }}-\psi_{i r}\right| .
$$

Go to step 2. We choose column $\Psi_{I r+1}$ and make steps from 3 to 5 . We repeat step 2 for all columns of matrix Ψ.

Go to step 1. We choose function φ_{i+1} and make steps from 2 to 5 . We repeat step 1 for all rows of the matrix Φ.

Step 6. We average of i and r values of prediction errors $\varepsilon_{i r}$

$$
\varepsilon_{i}=\frac{1}{m_{\eta}+1} \sum_{r=0}^{m_{\eta}} \varepsilon_{i r}, \quad \varepsilon=\frac{1}{n+1} \sum_{i=0}^{n} \varepsilon_{i}
$$

This value ε is averaged predictive error value of model for giving set of parameters.
Go to step 0. We choose new values of model parameters and repeat all procedure. We repeat step 0 for all set of model parameters.

Final of model training. We find set of parameters with the smallest value of error ε. We call this set of parameters the optimal one. This is the finale of the model training.

6. Model application

Let we have a training model with the optimal parameters: 1) $k N N, 2) \operatorname{dim} J$ and 3) multiindex iteration method. Let we have preimage function f as tuple pairs f_{j}, s_{j}, where $f_{j}=$ $f\left(s_{j}\right)$ and

$$
s_{0}=a, \quad s_{p}=b, \quad s_{j}<s_{j+1}, \quad j=\overline{0, p}
$$

We want to get predictive expression of image function $g=\Theta(f)$ as tuple pairs g_{k}, t_{k}, where $g_{k}=g\left(t_{k}\right)$ and

$$
t_{0}=c, \quad t_{q}=d, \quad t_{k}<t_{k+1}, \quad k=\overline{0, q} .
$$

We begin as we did on data preparing stage. We normalize tuple s_{j}, linearly interpolate the values $f\left(\zeta_{l}\right)$ at nodes of grid ζ and normalize values $f\left(\zeta_{l}\right)$ with considering all values $f_{i}\left(\zeta_{l}\right)$. As result we get tuple $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m_{\zeta}}$.

We create multi-index of nearest neighbors I_{φ}, then we solve partial regression problem for all multi-indexes J and columns $\Psi_{I_{\varphi} r}$. As result we calculate predictive values $\psi_{J r}^{\mathrm{pred}}$.

These values we average of J and get predictive value $\psi_{r}^{\text {pred }}$ of preimage function ψ at r-th node of grid η for ever r. We get cortege of image function predictive values $\psi_{0}^{\text {pred }}, \psi_{1}^{\text {pred }}, \ldots, \psi_{m_{\eta}}^{\text {pred }}$ on grid η.

After these calculations we do transformation, that is invers for normalization transformations. For values t_{r} we put

$$
t_{r}=(d-c) \eta_{r}+c, \quad r=\overline{0, m_{\eta}} .
$$

For values g_{r} we put

$$
g_{r}=\left(\max _{i \in \mathbb{Z} \cap[0, n]} \psi_{i r}-\min _{i \in \mathbb{Z} \cap[0, n]} \psi_{i r}\right) \psi_{r}^{\mathrm{pred}}+\min _{i \in \mathbb{Z} \cap[0, n]} \psi_{i r}, r=\overline{0, m_{\eta}} .
$$

These tuple pairs are expression of function g.

References

1 Poggio T and Shelton C R 1999 AI Magazine 20 37-55
2 Bishop C M 2006 Pattern Recognition and Machine Learning (Berlin: Springer) p 738
3 Clarke B, Fokoue E and Zhang H 2009 Principles and Theory for Data Mining and Machine Learning (Heidelberg: Springer-Verlag) p 781
4 Prakasa Rao B L S 1984 Statist. Probab. Lett. 2(3) 139-142
5 Sieders A and Dzhaparidze K A 1987 Ann. Statist. 15(3) 1031-1049
6 Ivanov A V 2017 Theor. Probability and Math. Statist 95 99-108
7 Ivanov A V and Matsak I K 2019 Theor. Probability and Math. Statist 99 91-99
8 Dedieu J-P and Shub M 2000 Mathematics of Computation 69 1099-1115
9 Smale S and Zhou D 2003 Anal. Appl. 1 1-25
10 Barron A R 1994 Machine Learning 14 115-133
11 Cucker F and Smale S 2001 Bull. Amer. Math. Soc. (N.S.) 39 1-49
12 Devore R A 1998 Acta Numer 7 51-150
13 Evgeniou T, Pontil M and Poggio T 2000 Adv. Comput. Math 13 1-50
14 Poggio T and Shelton C R 1999 AI Magazine 20 37-55
15 Micchelli C A 1986 Constr. Approx 2 11-22
16 Meinguet J 1979 Appl. Math. Phys 30 292-304

[^0]: * Corresponding author: samcocaa@rambler.ru

