

Adaptive 3D unstructured mesh refinement

I Gruzintsev1, M Kornilina2,*, M Yakobovskiy2

1Moscow Institute of Physics and Technology, Russia
2Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Russia

Abstract. Algorithms for generating three-dimensional detailed
computational meshes are considered. The algorithms are based on adaptive
refinement of the original coarse meshes describing a 3D object. The
purpose of adaptation is to form an accurate description of the volume and
surface of a three-dimensional object for supercomputer modeling.

Refinement of the boundary description is performed by projecting the cut
elements of the coarse mesh onto the corresponding elements of the object's
surface.

1 Introduction

In the numerical HPC modeling of physical processes, discrete computational meshes are

widely used for description of the geometry of particular problem (or general domain). High

requirements are imposed on discrete meshes in terms of the level and quality of

discretization, in order to ensure the required computing accuracy.
Detailed meshes consist of a large number of elements, which leads to higher computation

cost. Still large meshes can be processed very efficiently on modern supercomputers. Most

HPC systems aggregate multiple processors, processor cores, graphics accelerators, and other

operating devices. Effective well-coordinated operation of such complex computing systems

can be performed only if the workloads consist of a large amount of mutually independent

computing operations, which can be simultaneously processed on any operating device. From

this point of view, massive computational meshes allow to effectively adapt numerical

algorithms to the supercomputer architecture, and thereby reduce the computational time by
involving a lot of processors.

Computational meshes can be divided into two large groups: structured and unstructured.

The difference between them lies in the way of definition of their elements. In a structured

mesh all elements and their interconnection are totally defined by their computational

coordinates. That’s why the elements can be easily recomputed and they are usually not

stored in the computer memory. For unstructured meshes, this functional relationship does

not exist. Use of unstructured meshes usually requires more complex algorithms and a large

amount of RAM per mesh element. Due to the architecture of modern computer nodes,
especially processors and RAM, the use of unstructured meshes increases execution time of

elementary operations. The latter is caused by the more chaotic accesses to RAM addresses,

and therefore, to the poor use processors’ cache. However, the unstructured meshes have a

*Corresponding author: mary@imamod.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 224, 01011 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401011

number of advantages, which have gained an increased interest to them, especially recently.

We can name two main advantages of unstructured meshes over structured ones:

1) more accurate description of boundaries of geometric objects, without effect of
gradation for curved boundaries;

2) less computational mesh elements due to the use of enlarged mesh cells in not

significant areas.

The construction of computational grids containing 109 or more elements is a rather

difficult challenge. Further, we consider a way to improve the quality of 3D domain

discretization, which is based on the adaptive refinement of relatively coarse three-

dimensional tetrahedral meshes formed using available third-party mesh generators.

2 Problem statement

There are several aspects in the considered problem, both algorithmic and technological. We
have a great diversity at each step of construction of refined mesh:

1) geometry descripting of 3D object via CAD system;

2) generating of a coarse 3D mesh;

3) cutting of the coarse 3D mesh;

4) adaptation of the subdivided mesh to the boundaries of the 3D object;

5) achieving the desired quality of the adapted mesh.

At the step 1 a three-dimensional object may be described using geometric

transformations and set-theoretic operations over basic 2D and 3D primitive shapes (such as
polyhedral, sphere, objects defined by spline surfaces, and others). Let's consider an example

of approximation of a boundary fragment of a two-dimensional object (Fig. 1). In Fig. 1a a

triangle of a coarse mesh is highlighted in bold, and the result of its single dividing is

represented by thin cuts. The cut is made through additional vertices on the edges.

a) b)

Fig. 1. Refining of the computational mesh.

It is evident, that in general a growth of mesh cells does not necessarily result in a better

accuracy of the description of object boundary (Fig. 1a). Only two vertices are still located

on the object boundary, although an additional vertex has been added to the edge which

approximates this curve. The problem can be solved by shifting the added vertex to the

boundary of the object (Fig. 1b), that will provide a better accuracy of approximation.
However, to do this, we should at least have the knowledge about curve which should be

approximated by this the edge. A significant problem is that usually when the coarse mesh is

generated all excessive data describing the source object (e.g. spline parameters) and its

cross-reference with the mesh elements. This is a technical problem, which can be solved in

many ways and it is beyond the scope of this article. Here we present an approach that

partially eliminates the need to store such data.

At step 2 the following two consistent discrete meshes should be constructed:

- coarse 3D mesh (Fig. 2);
- a fine surface mesh (Fig. 3).

Both meshes are formed by the same third-party software package. In this work the

Salome integrated CAD-CAE system [2] is used for generation of the coarse tetrahedral

2

E3S Web of Conferences 224, 01011 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401011

mesh. This system can be used to construct a surface triangulation of the object boundary as

well.

Fig. 2. Coarse 3D mesh describing a
cylinder fragment.

Fig. 3. Fine boundary mesh describing a cylinder
fragment.

Further refinement should be performed by adapting the boundary of the generated mesh to

the boundary of the 3D object described by a fine surface grid. Experiments demonstrate that

the good results can only be achieved if a refined mesh has at least some hundred times more

surface nodes than the number of triangles on the surface of a coarse 3D mesh. The memory
required for storing a surface mesh is much less than the memory required for storing a

volume mesh with the same number of nodes, since in the former case far less data is required

about the interconnection of mesh elements. So according to estimations a fine surface mesh

on the average by two orders of magnitude more detailed than the surface fragment of a

coarse volume mesh can be generated quite successfully.

The reason for using Salome generator is due to the technological sequence underling the

package for solving hydrodynamic problems MARPLE3D developed by our team. The data

structure of the MARPLE3D code is quite compatible with Salome, i.e. it permits processing
of geometric information created by this platform. There is a data Converter from the Salome

system to an intermediate format. This format is, in its turn, converted to the internal format

of the MARPLE3D package [1]. The intermediate format that is obtained after the SALOME-

to-MARPLE3D converter is itself a very natural and clear format of setting the computational

mesh, thus the codes that implement refinement algorithms are mainly focused on this format.

One of the main requirements for the refinement algorithms is that the constructed

tetrahedral mesh should reproduce all the main peculiarities of the domain boundary,

including sharp edges and conical vertices. From Salome generator one can get vertices that
lie in the intersection of physical subdomains which describe the boundary of the

computational domain. These vertices mostly define narrow elements with sharp edges, since

they belong to the intersections of surfaces. But you will never say that there aren't any other

sharp edges on the surface. Therefore, the algorithms are required for adapting of neighboring

cells to such edges without any preliminary indicating them while formation of

computational domain.

This problem is somewhat discussed i.e. in [9, 10]. However, in [10], the initial surface

mesh is adapted to the domain defined as an isosurface of an implicitly defined function,
while in [9], the general issues of constructing computational meshes are considered, and

adaptation to the surface is considered along with improving of tetrahedrons quality.

3

E3S Web of Conferences 224, 01011 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401011

Note, that in this paper, the algorithms of step 5 improving the quality of the 3D grid are

not considered. The corresponding activities can be performed, for example, using the

ANI3D package [13].
The results visualized using the ParaViewViewer package.

3 Refinement algorithms

3.1 Non-adaptive subdivision of coarse mesh

At step 3 subdivision of coarse 3D mesh can be performed by any algorithm enabling to

subdivide tetrahedra. In this work, the algorithm [12] was used. According to this algorithm,

all tetrahedra of the initial grid were divided into 4 tetrahedra and one octahedron (Fig. 4).
New vertexes were added to the midpoints of the edges. Then each octahedron was divided

into 4 tetrahedra (Fig. 5). The new edge is placed so that the quality of the resulting tetrahedra

would be the best. Quality criterion was the fallowing: the ratio of the longest and shortest

edges lengths should be minimal [7]. A more detailed description of this algorithm can be

found in [3].

Fig. 4. Cutting of tetrahedron. Fig. 5. Cutting of octahedron.

3.2 Adaptive subdivision of coarse mesh

Two algorithms for adaptive subdividing of computational grids have been developed. They

differ in the way how the sharp edges of the 3D object surface can be determined. The first

algorithm does not use any a priori information whether the elements of a fine surface grid

belong to the boundaries of the initial surfaces or not. The second algorithm uses available

information, for example, due to storing a fine surface grid in GMF format, which

incorporates the data about the junctions of surfaces (all edges are listed with the constituent
vertexes). Thus, sharp edges can be identified at the stage of the initial mesh generation.

3.3 Formalization of the problem statement

Let us consider the general problem of constructing tetrahedral grids in implicit domains and

formulate the necessary requirements to the constructed three-dimensional computational

grid [9]. A three-dimensional domain Ω with a boundary 𝜕Ω is approximated by a polyhedron

Ωh with boundary ∂Ωh composed of flat triangles joint together by the whole edges. A normal

tetrahedral partition 𝑇 is constructed inside the polyhedron Ωh, at that the set of boundary

triangles forms a subset of the partition faces. When the size of the edges of the boundary

grid approach zero the surface ∂Ωh should converges pointwise to ∂Ω. In addition, it is

necessary that the piecewise constant field νh of unit normals to ∂Ωh should converges

pointwise to a piecewise continuous field of unit normals ν of the surface ∂Ω. The parameter

ℎ plays the role of the cell size, i.e. it is assumed that the maximum length of the grid edge 𝑇

4

E3S Web of Conferences 224, 01011 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401011

does not exceed 𝐶ℎ, where 𝐶 is a constant. There is no independent parameter ℎ in this

problem statement, and the boundary of the domain 𝜕Ω is represented by a set of triangles of

the fine mesh 𝜕Ω𝑚. Repeated subdividing of a tetrahedral mesh is performed by sequential
executing the step of dividing of the initial coarse mesh, or the mesh obtained in the previous

iteration.

Let's consider one step of adaptive subdividing (hereinafter we will call this a step

iteration). As a result of its execution, the elements of the polyhedron Ω𝑛1 whose boundary

is a set of triangles ∂Ω𝑛1, are replaced by the polyhedron Ω𝑛2, whose boundary is ∂Ω𝑛2. Here

𝑛1, 𝑛2 is the number of elements describing the surface of polyhedra, and 𝑚 ≫ 𝑛2 > 𝑛1.

Let us briefly describe the corresponding adaptive algorithms for mesh subdividing. In detail
they are presented in [12].

3.4 Adaptive algorithm without use of information about the fine mesh vertices
located on the domains boundaries (А𝟏)

Algorithm А1 consists of the following steps:

1. Non-adaptive cutting of coarse mesh.

2. Adaptation of the boundary of constructed mesh to the boundary of calculation domain

(fine mesh). At this step the iterative shift of new vertices located on the edges of the

triangles of the course mesh boundary is performed by the algorithms presented in [12].

3. Checking the obtained grid for the presence of degenerate triangles and tetrahedral.

4. In case of degenerate elements the mesh should be corrected. Correction is always
possible, since step 1 of this algorithm does not lead to the appearance of degenerate

elements. Thus, in the worst case, an unadapted grid will be constructed.

The results of the algorithm А1 show that the heuristic nature of compliance determining

for the triangles of the target boundary and the boundary formed by mesh in many cases

makes impossible the proper adaptation of sharp edges even for relatively simple objects

(Fig. 6). In many cases, only shift is made towards the junctions of surface fragments, but the

vertices do not fall on the junctions themselves.

Fig. 6. Result of the algorithm А1. Fig. 7. Result of the algorithm А2.

For a more accurate reproduction of sharp edges and to reduce the number of formed

degenerate elements, it is necessary to fully use the information obtained from the initial
mesh files. The use of meshes in the GMF format for recording ensures preservation of

information about the junctions of surfaces. Thus, the edges of the junctions are selected at

the stage of initial mesh constructing using the complete information about the surface of 3D

object.

5

E3S Web of Conferences 224, 01011 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401011

3.5 Adaptive algorithm using information about the fine mesh vertices located
on the domains boundaries (А𝟐)

1. Non-adaptive cutting of coarse mesh.

2. For all vertices that are not marked as belonging to surface junctions, the nearest vertex

with a fine surface mesh around it should be searched for.

3. All vertices of the coarse 3D mesh that were initially marked as belonging to the junctions

of surfaces are considered. For such vertices, the closest one is found among the vertices
of the fine mesh, marked at the initial stage, as residing at the junctions of the surfaces of

the fine mesh. And current vertex is shifted to the found one.

4. The resulting mesh is checking for the presence of degenerate triangles and tetrahedra.

5. In case of degenerate elements, the mesh is corrected.

Results of the algorithm А2 show that use of a priori information provides a higher quality

of object boundaries approximation as compared to algorithm А1 (Fig. 7-9).

Fig. 8. Refinement, iteration step 1. Fig. 9. Refinement, iteration step 2.

4 Further development of work

Despite the good results of the algorithm А2, the uncontrolled occurrence of irremediable

degenerate elements for the objects with complex surface shape remains an open question.

The main reason of such behavior is that in the framework of the suggested approach, the

triangles of the initial mesh Ωn1 and the constructed mesh Ωn2 are not adjusted to the triangles

of the final fine surface mesh ∂Ωm. Therefore, errors occur in determining the proximity of

elements. An element selected as the nearest one does not correspond to the required

topology, which results in the appearance of degenerate elements. Preliminary estimates

show that modification of the method used for coarse mesh generation can diminish the

number of such errors.

Let 𝜕Ω𝑚
0 = 𝜕Ω𝑚. Let us describe the algorithm 𝐴3 for generating the triangulation 𝜕Ω𝑚

i+1

by uniformly coarsening of triangulation 𝜕Ω𝑚
i . A similar method was used for coarsing

surfaces in [14]:

- we find a set 𝑉1 of pairwise non-adjacent vertices belonging to the junctions of the mesh

𝜕Ω𝑚
i ;

6

E3S Web of Conferences 224, 01011 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401011

- we find a set 𝑉2 of vertices of mesh 𝜕Ω𝑚

i , pairwise non-adjacent to each other and non-

adjacent to the vertices of the set 𝑉1;

- we exclude vertices 𝑉1 ∪ 𝑉2 and both incident triangles and incident edges. When each

vertex is excluded we do the following: a) the set of incident triangles and edges is recorded;

b) the resulting gap is filled with a series of new triangles (Fig. 10); c) for each new triangle

the excluded vertex 𝑃 is recorded.

Fig. 10. The example of removing the vertex 𝑃 and 5 triangles incident to it
followed by filling the gap with three triangles.

The following steps for the high-quality mesh generation are suggested:

1) geometry descripting of 3D object via CAD system;
2) generating of detailed 2D surface mesh and its recording with information about the

vertices and edges belonging to the boundaries of surface fragments (junctions);

3) generating of a sequence of nested meshes using k-fold application of the algorithm

𝐴3:

𝜕Ω𝑚
1 , 𝜕Ω𝑚

2 ,… 𝜕Ω𝑚
k

4) generating a coarse 3D mesh corresponding to 𝜕Ω𝑚
k mesh;

5) single subdividing of the formed 3D mesh with restoration of the positions of vertices

and edges which previously belonged to the junctions of the mesh 𝜕Ω𝑚
k−1;

6) one-time adaptation of subdevided 3D mesh to 𝜕Ω𝑚
k−1 mesh;

7) let 𝑘 = 𝑘 − 1 ;

8) if 𝑘 > 0 go to step 5;

9) achieving the desired quality of the adapted mesh (is not discussed here) .

At step 5, for subdividing of edge both vertices of which lie at the same junction, the

previously recorded (and removed) vertex is used. This vertex also lies at the junction of the

surface 𝜕Ω𝑚. This allows to restore the junctions accurately.

Due to accurate transfer of the boundaries and using at each iteration of surface

representation with the most matching scale the proposed strategy significantly lessens the

chance of obtaining degenerate elements. The logic of locating of close elements is also

significantly simplified owing to the use of information about parent triangles.

5 Conclusion

Adaptive refinement algorithms are represented for generation of computational meshes with
multiple mesh-elements required to provide a high accuracy of numerical supercomputer

modelling of a wide range of physical processes. The testing results are presented which

confirm the efficiency of the considered algorithms. The reasons for the applicability limiting

of the considered methods are analyzed and a strategy for further quality improving of the

developed adaptive refinement algorithms is proposed.

7

E3S Web of Conferences 224, 01011 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401011

References

1. D'yachenko S V, Gasilova I V, Dorofeyeva Ye YU 2012 Preprinty IPM im

MVKeldysha 36

2. SALOME – The Open Source Integration Platform for Numerical Simulation

http://wwwsalome-platformorg/

3. Yakobovskiy M V 2006 Vychislitel'naya sreda dlya modelirovaniya zadach

mekhaniki sploshnoy sredy na vysokoproizvoditel'nykh sistemakh: dissertatsiya

051318 (Moskva)

4. Freay P J, George P-L 2000 Mesh Generation: application to finite elements

(Oxford & Paris: Hermes Science Publishing)

5. Owen S J 1998 Proceedings of 7th International Meshing Roundtable (Dearborn,

MI) p 239

6. Galanin M P, Shcheglov I A 2006 Preprinty IPM im MV Keldysha 9 32

https://keldyshru/papers/2006/prep09/prep2006_09html

7. Galanin M P, Shcheglov I A 2006 Preprinty IPM im MV Keldysha 10 32

http://keldyshru/papers/2006/prep10/prep2006_10html

8. Danilov A A 2010 Tekhnologiya postroyeniya nestrukturirovannykh setok i

monotonnaya diskretizatsiya uravneniya diffuzii: dissertatsiya kandidata fiziko-

matematicheskikh nauk: 051318 (Moskva)

9. Kudryavtseva L N 2014 Metody samoorganizatsii i optimizatsii dlya postroyeniya

trekhmernykh raschetnykh setok: dissertatsiya na soiskaniye stepeni kandidata

fiziko-matematicheskikh nauk po spetsial'nosti 010107 (Moskva)

10. Ohtake Y, Belyaev A, Pasko A 2003 The Visual Computer 19(2) 115–126

11. Sukov S A 2015 Preprinty IPM im MV Keldysha 23 22

http://librarykeldyshru/preprintasp?id=2015-23

12. Gruzintsev I O, Yakobovskiy M V 2019 Parallel'nyye vychislitel'nyye tekhnologii

(PaVT'2019) Korotkiye stat'i i opisaniya plakatov XIII Mezhdunarodnoy nauchnoy

konferentsii (Chelyabinsk: Izdatel'skiy tsentr YUUrGU) p 223

13. Lipnikov K, Vasssilevski Y Advanced Numerical Instruments 3D

http://sourceforgenet/projects/ani3d/

14. Yakobovskiy M V 2004 Voprosy atomnoy nauki i tekhniki Ser Matematicheskoye

modelirovaniye fizicheskikh protsessov 2 40

8

E3S Web of Conferences 224, 01011 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401011

https://keldysh.ru/papers/2006/prep09/prep2006_09.html

