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Abstract. This report discusses Shor's quantum factorization algorithm 
and ρ–Pollard’s factorization algorithm. Shor's quantum factorization 
algorithm consists of classical and quantum parts. In the classical part, it is 
proposed to use Euclidean algorithm, to find the greatest common divisor 
(GCD), but now exist large number of modern algorithms for finding 
GCD. Results of calculations of 8 algorithms were considered, among 

which algorithm with lowest execution rate of task was identified, which 
allowed the quantum algorithm as whole to work faster, which in turn 
provides greater potential for practical application of Shor’s quantum 
algorithm. Standard quantum Shor’s algorithm was upgraded by replacing 
the binary algorithm with iterative shift algorithm, canceling random 
number generation operation, using additive chain algorithm for raising to 
power. Both Shor's algorithms (standard and upgraded) are distinguished 
by their high performance, which proves much faster and insignificant 

increase in time in implementation of data processing. In addition, it was 
possible to modernize Shor's quantum algorithm in such way that its 
efficiency turned out to be higher than standard algorithm because classical 
part received an improvement, which allows an increase in speed by 12%. 

1 Introduction 

Today, the field of quantum computations is gradually becoming the leader of 

information technology and calculations. Scientific researchers are paying increasing 

attention to super-modern computational model based on the notion of qubit (quantum bit) 

designed to supplant the long–known model that has been used in almost all computer 

hardware and based on the notion of bit, developed by A. Turing and J. von Neumann [1, 

2]. 

Quantum bit is kind of quantum system, which before the measurement is in arbitrary 

linear superposition of two basic quantum states, and as a result of the measurement, it 
takes one of two possible values with certain probability. On one hand, this element is the 

same bit, because it takes two values, and on other, it is quantum, since these two values are 
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in superposition with each other. Recently, quantum computational model has attracted 

increasing attention of scientists and engineers, because its practical application in future 

will provide tremendous opportunities for solving problems that have not found effective 

solution algorithms in the bit computational model [3]. 

One of the clearest examples of such problems is the problem of the certain number 

factorization, the solution of which is to find the divisors of this number [4]. 

2 Purpose of Investigations 

Based on the foregoing, it is necessary to prove the advantage of the quantum algorithm 

over the algorithms of other computational models. In addition, Shor’s algorithm has 

quantum and classical parts, which makes it possible to increase the calculation speed of the 
algorithm as whole, by maximally modernizing and simplifying the latter. 

Despite the advantages of the quantum algorithm, it has its drawbacks, since it has a 

classic part that runs on ordinary computers. The classical part is the weak link in the 

Shor’s algorithm. Therefore, by modernizing and simplifying it as much as possible, it is 

possible to increase the speed of computation of the Shor’s quantum algorithm. 

3 Theoretical Preconditions and Research Methods 

The supposedly large computational complexity of the factorization task lies at the heart of 

cryptographic strength of some public-key encryption algorithms, such as RSA. Moreover, 

the system is hacked unambiguously if at least one of the key parameters of the RSA 
algorithm is known. 

The factoring is Pollard’s  – method. Consider the following factorization Pollard’s 

algorithm  – method: 

Consider a sequence of integers nx
, such, that each next number is: 

...2,1,0,mod)1( 2

1  nNxx ni . In this sequence 0x
 is a small number. 

At each step, we will calculate the value  

( ,| |),i jd GCD n x x where 
 ij  . 

If 1d , then the calculation ends. The found number d  is a divisor of the number n . If 

dn /  is not a prime number, then you can continue by taking the number dn /  instead of n . 

The main disadvantage of this method is the allocation of additional memory to store 

the previous values jx
.  

Note that if 
)(mod0)( pxx ji 
, then 

)(mod0))()(( pxfxf ji 
. 

Therefore, if a pair of 
),( ji xx
 gives us the solution, then a solution will be given by any 

pair of 
),( kxkx ji 

[5]. 
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4 Shor's Quantum Algorithm 

The essence of this method lies in the fact that the task of factorization is reduced to the 

task of finding the period of a function. When the function period is known, factorization is 

performed on a classical computer in polynomial time using the Euclidean algorithm. The 

quantum part of the algorithm is assigned to perform the search period function. And the 

classical part of the algorithm first prepares this function in a special way, and then checks 

the period found by the quantum part for sufficiency to solve the problem. If the period is 

found correctly (the algorithm is probabilistic, so it can find not what you want), then the 

problem is solved. If not, then the quantum part of the algorithm is executed again. In 

addition, since the validation of the solution for the factorization problem is very simple 

(multiplied two numbers and compared with the third one), then this part of the algorithm 
can be disregarded in general from the point of view of calculating complexity [6, 7]. 

Shor's factorization algorithm: 

1. Choose a random number a , less than MaM : . Calculate ( , )GCD a M by Euclidean 

algorithm. 

2. If ( , )GCD a M   is  not  equal  1,  then  there  is a nontrivial divisor of M , so the 
algorithm terminates (degenerate case). 

3. Otherwise, it is necessary to use the quantum subroutine of the period function 

search Maxf x mod)(  . 

4. If the period r  found is odd, then go back to step 1, and select another number a . 

5. If )(mod12/ MMar  , then go back to step 1 and choose another number a . 

6. Finally, define two values of 
/2( 1, )rGCD a M , which are the non–trivial divisors of 

M . 

It is important to choose the number of qubits that will be used in the quantum scheme. 

It is necessary to choose such number of qubits 
q

 in order that inequality 
22 22 MM q   

be fulfilled. If this equality is fulfilled, it is ensured that a given number of qubits is enough 

for a sufficient number of times to fulfill the function for which a period is sought so that 

constructive interference will work [8-12]. 

5 Implementing Shor's Quantum Algorithm 

Before implementation, it is necessary to define some auxiliary functions and constants. 

numberToFactor ::Int 
numberToFactor  = 21 

simpleNumber ::Int 

simpleNumber = 2 

nofAncillas ::Int 

nofAncillas = 5 

nofWorkingOubits::Int 

nofWorkingOubits = 4 

nofOubits ::Int 

nofOutbits = nofWorkingOubits+nofAncillas 

periodicFunction::Int -> Int 

periodicFunction x=simpleNumber^x’mod’numberToFactor 

Constant ctornumberToFa specifies the number that must be decomposed into prime 

factors. Constant ersimpleNumb  is mutually prime number with the previous constant. 

Constants: snofAncilla , nofWorkingQubits and nofQubits represent the number of 
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auxiliary and working qubits, as well as the total number of qubits in the quantum scheme 

[9]. 

Function nctionperiodicFu  is just that periodic function, the task of finding the period 

of which is fulfilled by the quantum subroutine of Shor's algorithm. Next, we implement 

the quantum scheme in the form of function. 

).(

|

|

|

)(::

nofOubitsfromVectormeasure

snofAncillagateIn

OubitsnofWorkingqft

o

snofAncillagateIn

OubitdnofWorkinggateHninitial

otoringquantunFac

StringIODoubleComplexMatrixtoringquantunFac













 

Comparative analysis of algorithm data in practice. The quantum algorithm for factoring 

Shore, as mentioned earlier, can be divided into two parts - the classical and the quantum. 

Consider the weakest point of this algorithm, namely the classical part, which can be 

modified and modernized. 

The classic part. In the classical part, it is proposed to use the Euclidean algorithm to 
find the GCD, but, moreover, there are a fairly large number of algorithms for finding the 

greatest common divisor of a pair of numbers.  

Below are the results of calculations of each of these algorithms, among which it is 

required to identify the algorithm with the lowest speed to complete the task, which will 

allow the quantum algorithm as a whole to work somewhat faster, which in turn will 

provide greater potential for practical application of the quantum Shor’s algorithm [10]. 

As the studied ones, eight most common algorithms for finding GCD were selected, and 

their calculation speed was checked on numbers of different complexity. 

The numbers gcd 1 – gcd 8 correspond to following names: 

1. Search from an arbitrary number. 

2. Search from the minimum number. 

3. With decomposition into dividers. 
4. Euclidean algorithm is recursive. 

5. Euclidean algorithm iterative. 

6. Binary algorithm recursive. 

7. Binary algorithm iterative. 

8. Binary algorithm iterative shift. 

The results of the calculations are presented in Table 1. 

Table 1. Calculations of Classical Algorithms. 

N 10-100 100-1000 1000-10000 
10000-100 

000 

100 000 – 

1 000000 

gcd 1 0.0040 0.0402 0.3531 1.7404 7.7908 

gcd 2 0.0030 0.0305 0.2490 1.3123 7.4236 

gcd 3 0.0028 0.0134 0.0436 0.1089 0.4675 

gcd 4 0.0068 0.0150 0.0273 0.0277 0.0454 

gcd 5 0.0010 0.0017 0.0025 0.0029 0.0036 

gcd 6 0.0030 0.0064 0.0085 0.0099 0.0124 
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gcd 7 0.0012 0.0018 0.0020 0.0022 0.0026 

gcd 8 0.0009 0.0014 0.0016 0.0018 0.0020 

The most effective algorithm is gcd 8 (binary with iterative shift), the second in efficiency 

is gcd 7 (binary iterative) and the third is gcd 5 (Euclidean algorithm iterative). The gcd 5 

algorithm (Euclidean algorithm iterative) is superior to gcd 7 (binary iterative algorithm) 
when working with numbers less than 1000, but it is undoubtedly inferior to large numbers. 

The most rational is the choice of the gcd 8 algorithm (binary iterative algorithm with a 

shift), the reason for which is that it is designed to solve very time-consuming tasks. In this 

regard, this algorithm is unlikely to be applied from a practical point of view for numbers 

with a small range smaller than 1000. 

Thus, the use of this algorithm will allow you to calculate the GCD of two numbers 

29% faster than using the standard Euclidean algorithm. It is also worth noting that in the 

algorithm when forming the number a, there is an operation to generate a random number 

that is not fast enough and cyber-safe in the calculation. The standard operation of 

exponentiation is also not fast enough in this algorithm. We propose to use an additive 

chain algorithm, since it works faster and meets our requirements. 

In the algorithm, when generating a random number a , the operation of generating a 

random number is used, which is not fast enough and cyber–safe in the calculation. 

Therefore, it was decided to replace this operation on nM   where Mn . The 

calculated result of the average efficiency of the algorithm was 72%. 

The standard operation of exponentiation is also not fast enough in this algorithm. After 

analyzing all the existing algorithms, it was decided to use the algorithm of additive chains, 

the average efficiency of which is 53% higher compared to the standard algorithm 

Having performed the modernization of the classical part of Shor's algorithm, testing 

was performed to calculate the secret exponent of d  RSA cipher index, where d takes 

values in the range from 3 to 3000. 

The graph shows the number of operations performed by algorithms to decipher the 

value of d.  

The result of calculations using algorithms: 1) Pollard’s  –method; 2) Shor’s; and 3) 

modified Shor’s algorithm are presented in the Figure 1: 

 

Fig. 1. Algorithm Comparison. 

Based on the results of this experiment, there is an advantage of Shor's quantum algorithm, 

modified by upgrading its classical part with an iterative binary algorithm with the shift. It 

allows to the algorithm operating on 12% faster.  
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Thus, comparing the algorithms of Shor’s and Pollard’s  – method, it is easy to notice 

that the quantum algorithm performs the data processing and calculations much faster and, 

analyzing the graph, the computation time increases slightly depending on the increase in 

the processed number. 

6 Conclusion 

The studies performed in this paper show the superiority of quantum computing algorithms 

over modern non-quantum algorithms, whose productive power is significantly lower. The 

tested modified quantum algorithm showed high performance in front of the standard 

algorithm. 

The results of testing two algorithms show that, depending on the increase in the value 

of the processed number, the elapsed time and the number of calculations on them 

increases. 

The Shor’s quantum algorithm improved by the authors showed its efficiency due to the 

modernization of the classical part, which works 50% faster than the standard algorithm. 
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