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Abstract. This paper offers an approach for evaluating the significance of 
individual characteristics of recognized objects. The scope of this approach 
is not the subject area where objects and characteristics of these objects are 

specified, but a trained  - neural network that works correctly on the 
specified subject area. In this paper, we propose a method for constructing a 

crucial function based on the weight characteristics of a correctly 

functioning  - neuron.  A logical derivative is used to evaluate the 
significance of object characteristics. This makes it possible to track how the 
decision function will change its value if one or more object characteristics 
change their value. This will allow us to draw a conclusion about the most 
important properties of the subject area under consideration. 

1 Introduction 

Today, neural networks are one of the most popular tools for solving poorly formalized tasks. 

Tasks for which there is no mathematical formulation and formal algorithmic solutions. 

These are tasks for the solution of which heuristics are required in order to find a more 

rational solution, rather than an exact mathematical one, by eliminating previously unsuitable 

solutions. The data and knowledge of this area are characterized by factors: incompleteness, 
unreliability, inaccuracy, ambiguity. 

Despite the fact that neural networks do a good job with a great many of such tasks, the 

rules for making decisions are not clear to the user. Available structure and weight 

characteristics, which acquired a neural network as a result of training. And to identify the 

logical connections according to the characteristics of a correctly functioning neural network, 

this means to gain new knowledge about the subject area being studied. 

By analogy with natural intelligence, which can be first taught by examples, then rules, 

methods, etc. are realized or created. 
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2 Construction of the classifier function based on the structure 

of the -neuron 

As is known, a -neuron (sigma-pi neuron) is a generalization of the classical model of a 

formal neuron with a linear function of summing 𝑠𝑝(𝑥1, . . . , 𝑥𝑛) input signals. 

  -neuron is represented by the following structure 

𝑠𝑝(𝑥1, . . . , 𝑥𝑛) =∑𝑤𝑖∏𝑥𝑖 

Where {𝑤1 , 𝑤2, . . . , 𝑤𝑘} is the set of weights of a given -neuron that recognizes k 

elements of a given subject 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘} area formed by the corresponding set of 

features {𝑋1, . . . , 𝑋𝑘} [1]. 
Example. Let the following training set be given: 

Table 1. Example. 

𝑥1 𝑥2 𝑥3 𝑦 

0 0 1 а (2) 

0 1 1 в(4) 

1 1 0 с(6) 

 

The set of attributes Х is represented by the following values: 

 
and the set of objects {a, b, c} can be transcoded for training in 

a-2, b-4, c-6. 

As a result of training according to the table, the -neuron will look like: 

 

Any query , which is presented in the table, will be identified with the 

corresponding object. 

If the query does not coincide with the values of the variables that are in the training set, 

for example (0,1,0), then the result may be incorrect or it may not exist at all. 

 [7]. 

Although, it could be an object, b-4, or c-6, in cases where there are inaccuracies, noise, 

interference in the data. 

To obtain more stable solutions, a trained neuron requires additional corrective methods. 

3 Construction of the decisive function according to the structure 

of the  -neuron 

When constructing the decisive function, you may not know the training set; it is enough to 

know the value of weights and the structure of the neuron. The function is built on a tree, the 

construction algorithm of which is described in [1]. 

The number of levels is equal to the largest number of products of variables in each of 

the terms +1. In the example there will be 3. 
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At the bottom level are variables {𝑥1, 𝑥2, . . . , 𝑥𝑛}. The weights of the first layer 

{𝑤1, 𝑤2 , . . . , 𝑤𝑟}, respectively, are objects {𝑦1, 𝑦2, . . . , 𝑦𝑟} on each subsequent layer 𝑦𝑘+1 =
𝑤𝑘+1 + 𝛴𝑦𝑖, where i the indices of the corresponding objects whose variables are included 

as factors in the element by 𝑦𝑘+1. 

Example.  

 

We will restore the objects of the training sample and find generalizing logical rules (see 

Fig. 1). 

 

Fig. 1. Recovery of objects of the training sample. 

From each vertex 𝑦𝑘 to each variable 𝑥𝑖: 𝑃(𝑦𝑘)&𝑃(𝑦𝑘−1)&. . . &𝑃(𝑦𝑖)&𝑥𝑖 

 

For this example, the minimum set of rules will look like: 

 

These rules are sufficient if only the presence of a characteristic is important for the data 

under consideration. But these rules are not enough if the value of the variable zero is also 

informative for decision making. And these rules are not enough, in the case of multi-valued 
coding. Therefore, there is a need to build additional trees, or imaginary paths, in the figure 

this is indicated by a dash-dot line. For example, it looks like in Fig. 2. 

 

Fig. 2. Object part of a logical function. 
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A dashed line indicates the relationship with the variable's negation. 

Then the decision function for our example will look like this: 

 

That is, the most important features for the source data will use the logical derivative. 

4 Some properties of operations of logical differentiation of 
boolean functions 

Logical differential and integral calculus are the directions of modern discrete mathematics 

and find their application in the problems of dynamic analysis and synthesis of discrete digital 
structures. The basic concept of logical differential calculus is the derivative of a Boolean 

function, the idea of which in the form of a Boolean difference was obtained back in [8-10]. 

By some of its properties, the Boolean derivative is an analogue of the derivative in 

classical differential calculus. 

Definition 1. The first-order derivative  
𝜕𝑓

𝜕𝑥𝑖
 of the Boolean function 𝑓(𝑥1, . . . , 𝑥𝑛) with 

respect to the variable 𝑥𝑖 is the sum modulo 2 of the corresponding residual functions: 
𝜕𝑓

𝜕𝑥𝑖
= 𝑓(𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖=1, . . . , 𝑥𝑛)⊕ 𝑓(𝑥1, . . . , 𝑥𝑖−1, 1, 𝑥𝑖=1, . . . , 𝑥𝑛) 

Definition 2. The weight of the derivative Р(
𝜕𝑓

𝜕𝑥𝑖
) of a Boolean function is the number of 

constituents (“1”) of this derivative. 

Statement 1 The greater the weight of the derivative, the greater the function 𝑓(𝑥1, . . . , 𝑥𝑛) 
depends on the variable 𝑥𝑖. 

Definition 3.  A mixed derivative of the k-th order of a Boolean function 𝑓(𝑥1, . . . , 𝑥𝑛) is 
an expression of the form: 

𝜕𝑘𝑓

𝜕(𝑥1. . . 𝑥𝑘)
=
𝜕

𝜕𝑥𝑘
(

𝜕𝑘−1𝑓

𝜕𝑥1. . . 𝜕𝑥𝑘−1
) 

In this case, the order of the fixed variable does not matter. The k-th derivative determines 

the conditions under which this function changes its value while changing the values of 

𝑥1, . . . , 𝑥𝑘. 

For our example: 

 

The derived derivative can classify objects by the variable 𝑥3. 

Derivative of the variable 𝑥2  

 

 

This result gives conflicting data on only two objects, and makes their classification 

impossible. Therefore, it can be argued that the variable 𝑥2 reflects the most important 

properties for the data under study. And the variables 𝑥3 and 𝑥1 are dependent, i.e. they are 

ensemble variables. . 
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5 Conclusion 

Building a logical function based on the weight characteristics of a neural network gives an 

idea of the hidden rules of functioning of this neural network, and makes it possible to correct 

the result in cases when the neural network is wrong. For example, if there is interference in 
the data. 

Analysis of the constructed decision function using logical derivative methods allows us 

to formalize the process of finding the coefficients of importance for the characteristics of 

object properties. And also to find the ensemble characteristics. This is particularly important 

when data is distorted due to information noise, or for other reasons. 

As a result, the quality of automated solutions to intellectual problems, their reliability, 

and ensuring the accuracy of achieving the correct solution are significantly improved by 

using the most effective systems for analyzing source data and developing more accurate 
methods for processing them. 
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