

Using a Boolean derivative to evaluate the
significance of properties of recognized objects

L A Lyutikova1,*

1Institute of Applied Mathematics and Automation KBSC RAS (IAMA KBSC RAS), 89a, str.
Shortanova, 360000, KBR, Nalchik, Russia

Abstract. This paper offers an approach for evaluating the significance of
individual characteristics of recognized objects. The scope of this approach
is not the subject area where objects and characteristics of these objects are

specified, but a trained  - neural network that works correctly on the
specified subject area. In this paper, we propose a method for constructing a

crucial function based on the weight characteristics of a correctly

functioning  - neuron. A logical derivative is used to evaluate the
significance of object characteristics. This makes it possible to track how the
decision function will change its value if one or more object characteristics
change their value. This will allow us to draw a conclusion about the most
important properties of the subject area under consideration.

1 Introduction

Today, neural networks are one of the most popular tools for solving poorly formalized tasks.

Tasks for which there is no mathematical formulation and formal algorithmic solutions.

These are tasks for the solution of which heuristics are required in order to find a more

rational solution, rather than an exact mathematical one, by eliminating previously unsuitable

solutions. The data and knowledge of this area are characterized by factors: incompleteness,
unreliability, inaccuracy, ambiguity.

Despite the fact that neural networks do a good job with a great many of such tasks, the

rules for making decisions are not clear to the user. Available structure and weight

characteristics, which acquired a neural network as a result of training. And to identify the

logical connections according to the characteristics of a correctly functioning neural network,

this means to gain new knowledge about the subject area being studied.

By analogy with natural intelligence, which can be first taught by examples, then rules,

methods, etc. are realized or created.

* Corresponding author: lylarisa@yandex.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 224, 01021 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401021

mailto:lylarisa@yandex.ru

2 Construction of the classifier function based on the structure

of the -neuron

As is known, a -neuron (sigma-pi neuron) is a generalization of the classical model of a

formal neuron with a linear function of summing 𝑠𝑝(𝑥1, . . . , 𝑥𝑛) input signals.

 -neuron is represented by the following structure

𝑠𝑝(𝑥1, . . . , 𝑥𝑛) =∑𝑤𝑖∏𝑥𝑖

Where {𝑤1 , 𝑤2, . . . , 𝑤𝑘} is the set of weights of a given -neuron that recognizes k

elements of a given subject 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘} area formed by the corresponding set of

features {𝑋1, . . . , 𝑋𝑘} [1].
Example. Let the following training set be given:

Table 1. Example.

𝑥1 𝑥2 𝑥3 𝑦

0 0 1 а (2)

0 1 1 в(4)

1 1 0 с(6)

The set of attributes Х is represented by the following values:

and the set of objects {a, b, c} can be transcoded for training in

a-2, b-4, c-6.

As a result of training according to the table, the -neuron will look like:

Any query , which is presented in the table, will be identified with the

corresponding object.

If the query does not coincide with the values of the variables that are in the training set,

for example (0,1,0), then the result may be incorrect or it may not exist at all.

 [7].

Although, it could be an object, b-4, or c-6, in cases where there are inaccuracies, noise,

interference in the data.

To obtain more stable solutions, a trained neuron requires additional corrective methods.

3 Construction of the decisive function according to the structure

of the -neuron

When constructing the decisive function, you may not know the training set; it is enough to

know the value of weights and the structure of the neuron. The function is built on a tree, the

construction algorithm of which is described in [1].

The number of levels is equal to the largest number of products of variables in each of

the terms +1. In the example there will be 3.

2

E3S Web of Conferences 224, 01021 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401021

At the bottom level are variables {𝑥1, 𝑥2, . . . , 𝑥𝑛}. The weights of the first layer

{𝑤1, 𝑤2 , . . . , 𝑤𝑟}, respectively, are objects {𝑦1, 𝑦2, . . . , 𝑦𝑟} on each subsequent layer 𝑦𝑘+1 =
𝑤𝑘+1 + 𝛴𝑦𝑖, where i the indices of the corresponding objects whose variables are included

as factors in the element by 𝑦𝑘+1.

Example.

We will restore the objects of the training sample and find generalizing logical rules (see

Fig. 1).

Fig. 1. Recovery of objects of the training sample.

From each vertex 𝑦𝑘 to each variable 𝑥𝑖: 𝑃(𝑦𝑘)&𝑃(𝑦𝑘−1)&. . . &𝑃(𝑦𝑖)&𝑥𝑖

For this example, the minimum set of rules will look like:

These rules are sufficient if only the presence of a characteristic is important for the data

under consideration. But these rules are not enough if the value of the variable zero is also

informative for decision making. And these rules are not enough, in the case of multi-valued
coding. Therefore, there is a need to build additional trees, or imaginary paths, in the figure

this is indicated by a dash-dot line. For example, it looks like in Fig. 2.

Fig. 2. Object part of a logical function.

3

E3S Web of Conferences 224, 01021 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401021

A dashed line indicates the relationship with the variable's negation.

Then the decision function for our example will look like this:

That is, the most important features for the source data will use the logical derivative.

4 Some properties of operations of logical differentiation of
boolean functions

Logical differential and integral calculus are the directions of modern discrete mathematics

and find their application in the problems of dynamic analysis and synthesis of discrete digital
structures. The basic concept of logical differential calculus is the derivative of a Boolean

function, the idea of which in the form of a Boolean difference was obtained back in [8-10].

By some of its properties, the Boolean derivative is an analogue of the derivative in

classical differential calculus.

Definition 1. The first-order derivative
𝜕𝑓

𝜕𝑥𝑖
 of the Boolean function 𝑓(𝑥1, . . . , 𝑥𝑛) with

respect to the variable 𝑥𝑖 is the sum modulo 2 of the corresponding residual functions:
𝜕𝑓

𝜕𝑥𝑖
= 𝑓(𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖=1, . . . , 𝑥𝑛)⊕ 𝑓(𝑥1, . . . , 𝑥𝑖−1, 1, 𝑥𝑖=1, . . . , 𝑥𝑛)

Definition 2. The weight of the derivative Р(
𝜕𝑓

𝜕𝑥𝑖
) of a Boolean function is the number of

constituents (“1”) of this derivative.

Statement 1 The greater the weight of the derivative, the greater the function 𝑓(𝑥1, . . . , 𝑥𝑛)
depends on the variable 𝑥𝑖.

Definition 3. A mixed derivative of the k-th order of a Boolean function 𝑓(𝑥1, . . . , 𝑥𝑛) is
an expression of the form:

𝜕𝑘𝑓

𝜕(𝑥1. . . 𝑥𝑘)
=
𝜕

𝜕𝑥𝑘
(

𝜕𝑘−1𝑓

𝜕𝑥1. . . 𝜕𝑥𝑘−1
)

In this case, the order of the fixed variable does not matter. The k-th derivative determines

the conditions under which this function changes its value while changing the values of

𝑥1, . . . , 𝑥𝑘.

For our example:

The derived derivative can classify objects by the variable 𝑥3.

Derivative of the variable 𝑥2

This result gives conflicting data on only two objects, and makes their classification

impossible. Therefore, it can be argued that the variable 𝑥2 reflects the most important

properties for the data under study. And the variables 𝑥3 and 𝑥1 are dependent, i.e. they are

ensemble variables. .

4

E3S Web of Conferences 224, 01021 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401021

5 Conclusion

Building a logical function based on the weight characteristics of a neural network gives an

idea of the hidden rules of functioning of this neural network, and makes it possible to correct

the result in cases when the neural network is wrong. For example, if there is interference in
the data.

Analysis of the constructed decision function using logical derivative methods allows us

to formalize the process of finding the coefficients of importance for the characteristics of

object properties. And also to find the ensemble characteristics. This is particularly important

when data is distorted due to information noise, or for other reasons.

As a result, the quality of automated solutions to intellectual problems, their reliability,

and ensuring the accuracy of achieving the correct solution are significantly improved by

using the most effective systems for analyzing source data and developing more accurate
methods for processing them.

Acknowledgements

The reported study was funded by RFBR according to the research project № 19-01-00648-a.

References

1. Lyutikova L 2018 Procedia Computer Science 145 312

2. Graves A, Wayne G, Reynolds M, Harley T, Danihelka I, Grabska Barwinska A, Gómez

Colmenarejo S, Grefenstette E, Ramalho T, Agapiou J et al 2016 Nature 538(7626) 471

3. Naimi A I, Balzer L B 2018 European Journal of Epidemiology 33 459

4. Yang Fan, Yang Zhilin, Cohen W W 2017 Advances in Neural Information Processing

Systems 2320

5. Flach P 2012 Machine Learning: The Art and Science of Algorithms that Make Sense

of Data (Cambridge University Press) p 396

6. Rahman Akhlaqur, Tasnim Sumaira 2014 International Journal of Computer Trends

and Technology 10(1) 31

7. Dyukova E V, Zhuravlev Yu I, Prokofiev P A 2015 Machine learning and data analysis

1(11) 1555

8. Zhuravlev Yu I 1978 Problems of Cybernetics 33 5

9. Lyutikova L A, Shmatova E V 2016 Information Technologies 22(4) 292

5

E3S Web of Conferences 224, 01021 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401021

