E3S Web of Conferences 233, 01022 (2021)
IAECST 2020

https://doi.org/10.1051/e3sconf/202123301022

Research on load modelling of new infrastructure of power
system-a case study of electric vehicle

Shugiang Yang'?, Wenyi Fan!, Yang Zhao' and Ziheng Zhao!

IState Grid Hebei Electric Power Co., Ltd. Economic and Technical Research Institute, 050021 Shijiazhuang, China

Abstract. The continuous rapid development of new infrastructure load represented by electric vehicles
(EVs) has brought new opportunities and challenges to the power system, as well as new propositions for

traditional power system load modelling. It is of great practical significance to study the planning and
operation of power systems considering EVs and other new infrastructure loads. Based on the analysis of
the real historical data of EVs, this paper proposes an EV load modelling method based on the charging
power scenario model. Based on the key variables of EV charging, the proposed model considers the joint
distribution model of the uncertainty and correlation of the key variables of EV charging. Power scenarios

are aggregated to obtain the EV load curve. Finally, the actual EV charging power data is used to verify the

effectiveness of the proposed method.

1 Introduction

In recent years, with the rapid development of new
infrastructure construction, new propositions have been
brought to the traditional power system load modelling.
Among them, as an important part of the intelligent
transportation infrastructure, electric vehicles have been
developed and gradually become a new load growth
point. From 2014 to 2019, the global electric vehicle
(EV) ownership continued to grow rapidly at an average
annual growth rate of 60% [1], and it will become an
important mode of transportation to solve problems such
as resource shortage and environmental pollution [2].

At the same time, due to the role of EV energy
storage, power system regulation ability can be further
improved by improving the intelligent level and
collaborative  control ability of EV  charging
infrastructure, and strengthening the integration of
charging infrastructure with renewable energy, power
grid and other technologies [3]. Therefore, EVs are
gradually becoming a hot issue in the field of power
system optimization, and the problem of EV load
modelling has also become an important aspect of future
load forecasting.

However, most of the existing studies assumes that
the key variables such as the initial charging time, the
initial state of charge (SoC), and the end SoC satisfy
conventional mathematical distribution models such as
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Gaussian distribution, Weibull distribution, and Uniform
distribution.

Aiming at the disadvantages of the existing studies in
the study of EV load modelling, this paper proposes an
EV load modelling based on charging power scenarios.
First, the key variables that characterize the charge and
discharge power curve of EVs are proposed. Then, based
on the historical charging data of EVs, the historical data
of key variables of EV charging and discharging are
obtained, and the probability density function and
cumulative distribution function are modelled. The
parameters are obtained from the historical data of key
variables in the charge of EVs. Finally, based on the key
variable model of EV charging, EV power scenarios are
generated through inverse transform sampling. The EV
load curve based on the EV power scenarios is obtained.

2 Analysis of key variables of EV
charging

2.1 Charging start time

The paper analyses the charging data of the first » times
(take n=3) each day, and obtains the probability density
histogram (PDH) of the charging start time of the n-th
charging on weekdays and weekends, as shown in figure
1.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Historical data distribution of EV charging start time.

Overall, the start time of the second charge PDH is
more to the right than the first charge. That is, time is
relatively late. The start time of the third charge PDH is
more to the right than the second charge. Comparing the
different characteristics of each charging start time PDH
on weekdays and weekends, we can see:

For the first charge, the probability density function
of the first charge on weekdays and weekends both
presents an obvious "multi-peak" form. This is related to
the rest habits of EV users and the charging habits that
affect them. During the weekdays, users charge their cars
for a limited time in the morning or use other attendance
methods after charging in the morning to form a peak in
the morning. The user recharges after going home at
night, forming a peak at night.

Compared to weekdays, the two peaks of the
probability density function of the first charge on
weekends are adjacent to each other. This may be
because EV users have late work and rest schedules on
weekends, or the lack of urgent demand for cars, which
results in the (first) charging start time distribution being
more scattered than weekdays.

On weekdays or weekends, some users charge before
going to bed, thus forming a small peak around the early
morning.

For the second and third charges, the shape of the
probability density function at the start time of the first
charge on weekdays and weekends is relatively simple,
which is a "single peak" form. In general, the peak time
of the second and third charging on weekends is slightly
ahead of the peak time on weekdays. This is because EV
users use their cars more frequently on weekends, and
will charge the second and third times relatively earlier.

2.2 Charging duration

The charging duration refers to the duration between
when an EV is connected to the grid and starts charging
until the end of charging. The charging duration is from
0 to the theoretical maximum charging time of the EV.
The charging duration PDH of the first, second, and third
charging on weekdays and weekends is shown in the
figure below:
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Figure 2. Historical data distribution of charging duration.

It can be seen that, for the charging duration of the
first charge, the distribution characteristics of it on
weekdays and weekends are quite different. For
weekends, the overall trend is that the longer the
charging duration, the smaller the probability density.
This may be because EV users are eager to use the car on
weekends, which leads to a higher probability of
charging with a shorter charging duration. For weekdays,
there is another peak near the interval of 0.15p.u. to
0.2p.u.. This shows that during weekdays, EV owners
have a longer half-weekday charging situation with a
continuous charging time of 3.6 to 4.8 hours due to work
reasons.

3 Modelling EV load based on key
variables

3.1 Analysis of the number of daily charging
times of EVs

This paper counts the daily charging of EVs on
weekdays (Monday to Friday) and weekends (Saturday
to Sunday). The analysis is as follows:

For working days, from the perspective of the
number of days with different charging times, the
proportions of days with 1, 2, 3, 4, 5, and 5 times or
more are 81.83%, 13.37%, 3.18%, 0.93%, 0.54% and

0.15%, respectively. The number of days when the
number of charging times is 3 times or less accounts for
98.38%.

For the weekend. The proportions of days with
charging times of 1, 2, 3, 4, 5 and more than 5 times are
80.36%, 13.34%, 4.11%, 1.25%, 0.70% and 0.25%,
respectively. The number of days when the number of
charging times is 3 times or less accounts for 97.80%.
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Figure 3. Percentage of daily charging times of EVs.

It can be seen that over 97% of the charging records
are the first 3 charges of the day, regardless of whether it
is a weekday or a weekend. At most 3 recharges occur in
more than 97% of the days. Therefore, in the subsequent
analysis, in order to simplify the modelling, the charging
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records of the 4th or more charging are ignored. Assume
that there are at most 3 charges per day. Compared to
weekdays, the number of EV charging times per day on
weekends is relatively high. It is more likely to be
charged twice a day and charged three times a day.

By modelling the key variables of the first three
charges per day. Based on the scenario generation
method, the EV charging power scenarios that obeys the
distribution of key variables is obtained. The charging
and discharging power of EVs (its own SoC and the
charging load from the grid) can be modelled through
the scenario generation method.

3.2 Modelling EV load based on key variables

For any EV charging scenario, the load on the grid can
be modelled by the above key variables /!, t;u,_, £, tjm,,

3
tSt

and ¢, (assuming the charging power p is known),
as shown in Figure 4.
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Figure 4. EV load curve of the grid in a day.

As shown in figure 4, the time ¢ and grid load p are
the horizontal and vertical axes, respectively. The single
EV load modelling is relatively simple. The charging
power is the p during the 3 charging period, and the
remaining time is 0.

By generating an EV charging scenarios considering
six key variables, the EV SoC and charging power can
be modelled. Since there is a certain correlation between
the key variables in the first, second, and third charging
of the EV, it is necessary to consider the correlation of
the key variables in the scenario generation. In this paper,
the joint distribution method is used to consider the
correlation of each key variable, and EV charging power
scenarios is obtained through joint distribution sampling.

To simplify the discussion, this paper uses
characterization variables XXXy o that is, when
2 2

3 3

1 1 1
mOdelhng EV load’ Xy XpeXy are tst > tdur > tst ’ tdur b tst > tdw’
and N=6.
According to Sklar's theorem, for marginal

distribution functions, F(x,),F,(x,) ... Fy(xy) , there is
an n-ary Copula function C such that for all
(%,,%,...x ) €[00, +0]" , satisfies
F(x,x,..xy) = )

C(F (), Fy(x,), -, Fy(xy)
And when F(x)), F,(x,) ... Fy(xy) are continuous,

the Copula function C is uniquely determined, where
F(x,,x,..x,) is the joint distribution function of the

marginal distribution  F(x,) , F,(x,) Fy(xy) -
Assuming that the total number of variables is N, i=1...N;
their respective marginal distributions can be expressed

as F(x,) , and the marginal distribution of each variable

can be obtained through the histogram of historical data.

Based on the Copula theory, the joint distribution
cumulative distribution function of all variables can be
expressed in the form of the marginal distribution
function and the connection function of the respective
variables [4], as shown in (1).

Similarly, the joint distribution probability density
function of all variables can be expressed as:

(X, x,..xy)

N (2)
=c(F (%), Fy(xy), ... 9FN(xN))'Hf(xi)

3.3 Modelling EV load of the grid

Based on the joint probability distribution scenario of
each key variable of EV charging, the grid load curve of
EV can be obtained respectively. By taking the weighted
average of the grid load curves of EVs, the grid load
curves of EVs can be obtained. By considering the
predicted number of EVs in a certain place, that is,
multiplying the number of EVs on the basis of the SoC
curve of a single EV and the grid load curve of EVs, the
SoC curve of EVs in a certain place and the grid load
curve of EVs are obtained.

4 Case study
4.1 Data and parameter

4.1.1 Data source

The historical data of EVs used in this paper comes from
study [5]. Including the historical data records of each
EV charging. The main information includes the
charging start time, the charging duration. As mentioned
earlier, the model in this paper only considers the first
three charges and is modelled according to the 6 key
parameters proposed in Section 2.

4.1.2 Model parameters

In this paper, Gaussian Copula function is used to model
the joint distribution of key variables in EV charging.
For weekdays and weekends, this paper generates 500
EV grid load power scenarios, and weighted average to
obtain the EV load curve.

4.2 EV charging load scenario

According to the model proposed in this paper, three
charging is considered to generate EV charging load
scenarios, and the three scenarios are shown as shown in
the figure. Among them, the first scenario (blue) and the
second scenario (green) are both one-time charging
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scenarios that occur at night. The difference is that the
charging time of the first scenario exceeds 24h. In the
third scenario (red), two charges occurred, in the
morning and in the evening.
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Figure 5. EV grid load scenarios in a day.

4.3 EV load modelling under different charging
times

Considering the key variables of three times, two times
and one charge respectively, 500 EV daily grid load
power scenarios are generated, and the weighted average
daily load curve of EVs is obtained, as shown in the
figure below. For comparison, based on historical data
and considering all charge and discharge times, the EV
load curve is obtained as a comparison benchmark.
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Figure 6. EV charging load considering different charging
frequencies.

As shown in figure 6, when the key variables of three
charging are considered, the load model is closest to the
load curve based on historical data. When only
considering the key variables of two charges and one
charge, the load curve will be underestimated to a certain
extent, especially during the evening peak period.

Comparing the load curves of EVs on weekdays and
weekends, it can be found that in addition to the evening
peak charging period on weekdays, there is also a
smaller peak during the noon period. This is because
users are more likely to commute by EVs in the
afternoon on weekdays. At noon on weekends, the load
curve decreases in the afternoon on weekdays. Due to
the relatively flexible user time on weekends, the shape

of the EV load curve is closer to the classic unimodal
distribution model, such as the Gaussian distribution.

5 Summary

Based on the key variables of EV charging power, this
paper obtains the EV curve scenarios, and further obtains
the EV grid load curve. The study found that variables
such as the initial charging time and charging duration of
EVs have obvious statistical characteristics, and they are
different on weekdays and weekends. Considering the
key variables of three charging and considering the
correlation between the key variables is of great
significance to improving the accuracy of the EV
charging model.

In the following research, we will further consider
the impact of EVs' temporal and spatial distribution and
seasonal characteristics on the charging and discharging
of EVs, and refine the study of EVs' load models on the
power system.
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