
* Corresponding author: barodi.anass@uit.ac.ma https: //orcid.org/0000-0003-3022-4761

Improving the transfer learning performances in the
classification of the automotive traffic roads signs

Anass Barodi1, *, Abderrahim Bajit1, Mohammed Benbrahim1, and Ahmed Tamtaoui2
1Laboratory of Advanced Systems Engineering ISA, National School of Applied Sciences, Ibn Tofail University, Kenitra, Morocco.
2National Institute of Posts and Telecommunications (INPT-Rabat), SC Department, Mohammed V University. Rabat, Morocco.

Abstract. This paper represents a study for the realization of a system based on Artificial Intelligence, which
allows the recognition of traffic road signs in an intelligent way, and also demonstrates the performance of
Transfer Learning for object classification in general. When systems are trained on the aspects of human
visualization (HVS), which helps or generates the same decisions, the construct robust and efficient systems.
This allows us to avoid many environmental risks, both for weather conditions, such as cloudy or rainy
weather that causes obscured vision of signs, but the main objective is to avoid all road risks that are dangerous
to achieve road safety, such as accidents due to non-compliance with traffic rules, both for vehicles and
passengers. However, simply collecting road signs in different places does not solve the problem, an
intelligent system for classifying road signs is needed to improve the safety of people in its environment. This
study proposed a traffic road sign classification system that extracts visual characteristics from a Convolution
Neural Network (CNN) classification model. This model aims to assign a class to the image of the road sign
through the classifier with the most efficient optimized. Then the evaluation of its effectiveness according to
several criteria, using the Confusion Matrix and the classification report, with an in-depth analysis of the
results obtained by the images that are taken from the urban world. The results obtained by the system are
encouraging in comparison with the systems developed in the scientific literature, for example, the Advanced
Driving Assistance Systems (ADAS) of the sector automobile.

1 Introduction
Machine learning, which is one of the sub-domains of
Artificial Intelligence, aims at automatically extracting
and exploiting the information present in a dataset for the
automobile sector [1]. It differs from traditional
approaches and facilitates the use of machines or systems
in building models from sample data to automate
decision-making processes based on the data entered [2].
Learning algorithms can be categorized according to the
type of learning they employ. Training a Convolutional
Neural Network is very expensive. The more layers are
stacked, the more convolutions and parameters to be
optimized. The machine must be able to store several
gigabytes of data and do the calculations efficiently.
That's why hardware manufacturers are stepping up
efforts to provide high-performance, GPU graphics
processors that can quickly drive a Deep Neural Network
by parallelizing the computations [3]. Transfer Learning
allows you to do Deep Learning without having to spend
a calculating.

The principle is to use the knowledge acquired by a
Neural Network when solving a problem to solve another
more or less similar one [4]. In this way, a transfer of
knowledge is achieved. Like many things in Machine
Learning, this technique is inspired by human behavior,

for example, when the driver is driving the car in a very
dangerous situation, so he has to react as quickly as
possible, so as not to have very serious consequences. In
addition to speeding up the training of the network,
Transfer Learning also helps to avoid overfitting [5].
Indeed, when the collection of input images is small, it is
strongly advised not to train the Neural Network from
scratch. Nowadays, we can easily retrieve it, and
especially in Deep Learning libraries, such as Keras [6]or
Pytorch [7], we can exploit the pre-trained Neural
Network in several ways, depending on the size of the
input data set and its similarity with the one used during
pre-training. This strategy consists of using the features of
the pre-trained network to represent the images of the new
problem. To do this, remove the last fully-connected layer
and set all other parameters [8]. This truncated network
will then calculate the representation of each input image
from the features already learned during pre-training. A
classifier, randomly initialized, is then trained on these
representations to solve the new problem when the new
image collection is small and similar to the pre-training
images. Indeed, training the network on so few images is
dangerous since the risk of overfitting, it’s very important
point in Deep Learning. Also, if the new images look like
the old ones, then they can be represented by the same
features [9].

E3S Web of Conferences 234, 00064 (2021)	 https://doi.org/10.1051/e3sconf/202123400064
ICIES 2020

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

ICIES’2020

2 Strategy

In this system in Figure.1, the explore the fine-tuning
technique, that allows us to exploit a pre-trained
Convolutional Neural Network, and adapt it to a new
classification case. The system is composed of two
phases, each phase contains a module. The first phase is
devoted to learning the model. This phase starts with an
essential step which is the pre-processing of the image
base. Then we obtain a new pre-processed image base,
these images go through two other stages. The first step is
to adapt the architecture of the pre-trained network to the
new classification case. This is done by changing the
network architecture. In this step, we explore two
different Convolutional Neural Network architectures
namely VGG-16, ResNet-34. The second stage consists
of training the Convolutional Neural Network on a
learning basis. During this step, the network parameters
are adjusted to the new problem. Finally, after
performance evaluation, the trained model is deployed.

Fig. 1. The approach for the realization of the system.

 When the new test images arrive, the second phase of
the system is triggered to process the request following
the same steps of the pre-processing previously applied
during training. This is followed by the prediction and
classification of each image. The architecture of the
approach proposed in this work is based on the Transfer
Learning technique. From a set of learning images, the
system aims to deduce a link between the characteristics
of each image and its class.

3 Methodology
Machines learn employing a loss function. This is a
method for evaluating how well a specific algorithm
model the data provided. If the predictions deviate too
much from the actual results, the loss function would
cover a very large number of them. Gradually, using a
non-convex optimization function, the loss function
learns how to reduce the forecast error [10]. There are
several loss functions in addition to Categorical Cross-
Entropy implemented in the model, and the learning rate
is probably the most important aspect of gradient descent,
along with other optimizers, and it comes down to
experimentation and intuition [11]. The choice of the
optimization algorithm can make the difference between
achieving good or high accuracy in hours or days. Among
these algorithms.

3.1 Gradient Descent Optimizer

This technique has been declined in many algorithms with
their specificities, gradient descent by batch, stochastic
(SGD), and mini-batch. In practice, gradient descent
consists of calculating the gradient of the cost function
with the derivative of the error concerning. The AI
parameters that can be updated, then updating the
parameters, for example, the weights an Artificial Neural
Network, in the direction that will decrease the error, it is
fast, efficient, robust, and above, all flexible in the sense,
that it is used in many algorithms, from Deep Learning
with Neural Networks to the more traditional Machine
Learning [12]. Stochastic Gradient Descent is the simplest
optimization algorithm to find parameters that minimize,
the given cost function. SGD (the Stochastic Gradient
Descent) updates the parameters for each example in the
data set 𝑥𝑥(𝑖𝑖) and label 𝑦𝑦(𝑖𝑖).

 𝜃𝜃 = 𝜃𝜃 − 𝜂𝜂. 𝛻𝛻𝜃𝜃. 𝐽𝐽(𝜃𝜃; 𝑥𝑥(𝑖𝑖); 𝑦𝑦(𝑖𝑖)) (1)

When lowering the learning rate 𝜂𝜂 , SGD shows the same
convergence as the batch gradient goes down.

3.2 Adaptative Momentum estimation Optimizer

ADAM this method calculates adaptive learning rates, for
each parameter, the keeps an exponentially decreasing
average of squared and past gradients [13]. These two
averages are estimates of the first moment (the mean), the
second moment (the uncentered variance) of the gradients.
This is an update the optimizer RMSProp, this optimizer is
based essentially on the current averages of gradients and
gradient moments, with the parameters, are 𝑤𝑤𝑡𝑡which is
linked to a loss function 𝐿𝐿𝑡𝑡, where t indexes the current
training iteration indexed to 0, the parameters of Adam is
given by these equations.

 𝑚𝑚⍵
(𝑡𝑡+1) ⟵ 𝛽𝛽1𝑚𝑚⍵

(𝑡𝑡) + (1 − 𝛽𝛽1)𝛻𝛻⍵𝐿𝐿(𝑡𝑡) (2)

 𝑣𝑣⍵
(𝑡𝑡+1) ⟵ 𝛽𝛽2𝑣𝑣⍵

(𝑡𝑡) + (1 − 𝛽𝛽2)(𝛻𝛻⍵𝐿𝐿(𝑡𝑡))2 (3)

 𝑚̂𝑚⍵ = 𝑚𝑚⍵
(𝑡𝑡+1)

1−𝛽𝛽1
 , 𝑣̂𝑣⍵ = 𝑣𝑣⍵

(𝑡𝑡+1)

1−𝛽𝛽2
 , ⍵(𝑡𝑡) ⟵ ⍵(𝑡𝑡+1) − 𝜂𝜂 𝑚̂𝑚⍵

√𝑣̂𝑣⍵+𝜀𝜀

 (4)

2

E3S Web of Conferences 234, 00064 (2021)	 https://doi.org/10.1051/e3sconf/202123400064
ICIES 2020

ICIES’2020

where ε is a small scalar (e.g. 10−8 used to prevent
division by 0, and 𝛽𝛽1 (e.g. 0.9) and 𝛽𝛽2(e.g. 0.999), without
forgetting its factors of gradients and gradient moments
which serves the squaring and squaring is done by each
element

3.3 Resilient Momentums prop Optimizer

RMSProp also tries to dampen the oscillations, but
differently than the amount of movement. RMSprop also
removes the need to adjust the learning rate and does so
automatically. This RMSprop algorithm is an alternative
version of Adagrad and looks like going down a gradient
with momentum, the difference is in the mathematical
calculation of the gradient. RMSProp is a method with a
learning rate that adapts to each parameter. Dividing the
learning rate for the weight, by a moving average the
amplitudes of the recent gradients for this weight, with the
moving average are calculated in terms of the square
averages, the good adaptation of learning rate
demonstrated in its following equations.

𝑣𝑣(𝑤𝑤, 𝑡𝑡) = 𝛾𝛾𝑣𝑣(𝑤𝑤, 𝑡𝑡 − 1) + (1 − 𝛾𝛾)(𝛻𝛻𝛻𝛻𝑖𝑖(𝑤𝑤))2 (5)

where 𝛾𝛾 is the factor of forgetting with updated
parameters.

 ⍵𝑡𝑡 = ⍵𝑡𝑡−1 −
𝜂𝜂

√𝑣𝑣(⍵, 𝑡𝑡)
𝛻𝛻𝑄𝑄𝑖𝑖(⍵) (6)

3.3 VGG-16 Architecture Description

Table 1. VGG-16 ARCHITECTURE.

Layer Types Output Shapes Parameters

Input Layer (None, 32, 32, 3) 0

Block1

Conv2D
(None, 32, 32, 64)

1792

Conv2D 36928

MaxPooling2D (None, 16, 16, 64) 0

Block2

Conv2D
(None, 16, 16, 128)

73856

Conv2D 147584

MaxPooling2D (None, 8, 8, 128) 0

Block3

Conv2D

(None, 8, 8, 256)

295168

Conv2D 590080

Conv2D 590080

Block3
Conv2D (None, 8, 8, 256) 590080

MaxPooling2D (None, 4, 4, 256) 0

Block4

Conv2D

(None, 4, 4, 512)

1180160

Conv2D 2359808

Conv2D 2359808

Conv2D 2359808

MaxPooling2D (None, 2, 2, 512) 0

Block5

Conv2D

(None, 2, 2, 512)

2359808

Conv2D 2359808

Conv2D 2359808

Conv2D 2359808

MaxPooling2D (None, 1, 1, 512) 0

Total parameters: 20,024,384/ Trainable parameters: 20,024,384
Non-trainable parameters: 0

VGG-16 consists of several layers, including 13
convolution layers and 3 fully-connected layers. So, it has
to learn the weights of 16 layers. It takes a 224 × 224 px
color images as input and classifies it into one of 1000
classes. It then returns a vector of size 1000, which
contains the probabilities of belonging to each of the
classes[14]. So, we will spend some time studying the
configuration of the different layers of VGG-16. VGG-16
is made of several layers, including 13 convolution layers
and 3 fully-connected layers, in our case, we take a 32x32
px color image and classifies it in one of the 43 classes.
The architecture of VGG-16 is illustrated by the Table. 1
below. Now that we've mastered the VGG-16 architecture,
the fun part is the implementation. Implementing a Neural
Network with Keras means creating a sequential model
and enriching it with the corresponding layers in the right
order. The most difficult step is to correctly define the
parameters of each layer, hence the importance is
understanding the network architecture. Finally, the ReLU
layer is used just after the convolution layer, the argument
activation ReLU is a very important activation function in
Deep Learning. For example in Table.1, for the first
convolution layer, the network has to learn 64 color filters
thus depth 3 of size 3; as well as a bias parameter for each
filter. This makes a total of (3*3*3) *64 + 64 = 1792
parameters.

3.4 ResNet34 Architecture Description

ResNet-34 Unlike traditional sequential network
architectures such as VGG. ResNet is rather a form of
exotic architecture based on micro-architecture modules,
also called network within network architectures. The term
micro-architecture refers to the set of building blocks used
to construct the network. A set of micro-architecture
building blocks with the standard layers Convolution,
Pooling, etc. leads to the macro-architecture, i.e. the end
network itself. The papers describe these in detail of each
step, that ResNet consists of an orange convolution and
pooling step followed by 4 layers of similar behavior. Each
layer follows the same pattern. The perform a 3x3
convolution with a fixed function map dimension (F) 64,
128, 256, 512 respectively, bypassing the input every 2
convolutions. Besides, the width (W) and height (H)
dimensions remain constant throughout the layer. The
dotted line is there precisely because the input volume
dimension has changed, a reduction because of the
convolution [15]. Note that this reduction between layers
is obtained by increasing the stride, from 1 to 2, at the first
convolution of each layer; instead of a clustering
operation, what are used to seeing as samplers. The
ResNet-34 architecture is illustrated in the diagrams below
in figure.2.

Fig. 2. Residual connection.

This makes it easier to understand the mechanism of a
particular model, to adapt it to our particular needs. The

3

E3S Web of Conferences 234, 00064 (2021)	 https://doi.org/10.1051/e3sconf/202123400064
ICIES 2020

ICIES’2020

next section shows how to simply change the strengths of
the dataset to change the architecture of the whole model.
Also, trying to follow the notation close to the official
implementation of PyTorch to facilitate its later
implementation on Python. All the operations of
convolutions, effected with batch normalization and ReLU
activation to an input, except for the last operation in a
block, which does not have the ReLU, we are faced with a
base now.

4 Related work
The experimentation is done in the Keras and PyTorch
Frameworks, which are very intuitive libraries of Deep
Learning in Python. The focus of our study is VGG-16, a
version for implementing Transfer Learning in
ASUSTEK Computer i7-7500U GPU NVIDIA
GEFORCE 920M. Python offers several libraries and has
an active community. Regarding data processing, the
Numpy, Pandas, and Matplotlib are libraries for matrix
calculations, data analysis, and visualization. For Deep
Learning, python has working environments such as
Keras and Pytorch. These work environments are very
useful because they allow easy management of the
backpropagation algorithm for large Neural Networks,
VGG-16, and ResNet-34-. They also ensure the
parallelization of calculations on the GPU.

4.1 Model Transfer Learning Keras

The data are limited, then the proposition is to take a VGG
network and to train only the top classifier part of the
network, indeed the 2D convolution part already does a
huge work of feature extraction on an already-trained
network, and is already able to classify a lot of objects.
The adaptation of VGG-16 to our needs by replacing only
the top layers, in the situation has very few training
images. Also artificially inflate the training set by reusing
the same images several times in Keras. The VGG-16 is
trained on ImageNet, which offers in our case 43 classes
in output. The first step is to remove the top layers, both
fully connected and softmax, from a pre-trained VGG-16
and replace them with our grading network. Considering
the architecture, VGG-16 will simply be charged, not
freezing the fully connected layers (FC). Redefining the
network allows us to test different architectures that can
add only the softmax or change the number of neurons in
the FC. This model is the result of different experiments
in Table. 2.

Table 2. VGG-16 Architecture update.

Layer Types Output Shapes Parameters
Model VGG16

(None, 512)

14714688
Dense 262656

Dropout 0
Dense 262656

Dropout 0
Dense (None, 43) 22059

Total parameters: 15,262,059
Trainable parameters: 547,371
Non-trainable parameters: 14,714,688

4.2 Implementation with Adam optimizer

 This section is for the implementation of the VGG16 net
architecture with optimizer Adam. In practice, this is the
most used optimization especially for Deep Learning in
Neural Networks, because of its efficiency and stability,
the Transfer Learning, even if, as we will see, it is not
perfect, also can see how to optimize our classifier. The
majority of scientific researchers recommend us when the
learning rate is reduced, this affects the training by given
game, in this case, the value in Table.3 without forgetting
Adam's betas.

Table 3. ADAM acceleration by betas.

Optimizer Lr Beta_1 Beta_2

Adam 0.0001 0.9 0.999

Fig. 3. Accuracy function of VGG-16 with ADAM.

Fig. 4. The loss function of VGG-16 with ADAM.

 For Adam optimizer for Figure.3 and Figure.4. Note
that Adam combines the ideas of Adagrad and RMSprop.
Thus, in addition to the classifier, the new images are
trained on the unfixed layers, which generally correspond
to the highest layers of the network. This strategy is used
when the new image collection is small but very different
from the pre-training images. On the one hand, as there are
few training images, training the whole network is not
feasible, so the caused the overfitting. On the other hand,
it also eliminates, since the new images have very little in
common with the old ones, using the optimizer Adam is
not a perfect idea, but remember that the features of the
lower layers are simple and generic so can be found in two
very different images, while those of the upper layers are

4

E3S Web of Conferences 234, 00064 (2021)	 https://doi.org/10.1051/e3sconf/202123400064
ICIES 2020

ICIES’2020

complex and specific to the problem. So, the strategy of
setting, change the optimizer, and training the classifier.

4.3 Implementation with RMSprop optimizer

This part starts by using the architecture of VGG16 net
with optimizer RMSprop, the model is the same, in the
same direction as the previous ones, with a reduction in the
learning rate, and defined the essential parameters of the
optimizer, are rho and epsilon defined all in the Table. 4,
at which we go down the curve of accuracy and loss for
visualization the effect of changing these updates
parameters.

Table 4. RMSprop acceleration by Rho.

Optimizer Lr Rho Epsilon

RMSprop 2e-3 0.9 1e-07

Fig. 5. Accuracy function of VGG-16 with RMSprop.

Fig. 6. The loss function of VGG-16 with RMSprop.

The RMSProp optimizer takes the stress out of
choosing the right learning speed. Now that we know a bit
more about optimizers, let's take a look at RMSProp, the
evolution that corrects Adam's main weakness, his strong
dependence on learning speed. Indeed, as shown in
Figure.5 and Figure.6, AI precision learning curves on the
validation data with Adam, can conclude that final results
depend strongly on the choice of the learning rate of
algorithm. Its far from the risk of overfitting, while there
are some spikes in the validation accuracy and loss,
overall, that it is much closer to the training accuracy, with
the loss indicating obtained of model, that generalizes
much better as compared to previous model. But the
remark can tack at the high score of accuracy is 35%, it’s

not better, because it doesn’t take time enough. The idea
now, to change this model by using the model profound
which is residual in Pytorch Framework, and evaluate the
performances on test dataset.

5 Discussion
The observation that it was logical to state that the deeper,
the better concerning Convolutional Neural Networks.
This makes sense, models should be more capable, their
flexibility to adapt to any space increases, a larger space
of parameters to explore. However, it has been noticed
that after a certain depth, performance degrades. It was
one of VGG's bottlenecks. The couldn't get as far as to
want, because starting to lose the ability to generalize with
SGD, this method is faster but too frequent parameter
updates cause the objective function to oscillate, these
oscillations, on the one hand, allow landing in potentially
better local minima, but on the other hand, make
convergence more difficult.

5.1 Amelioration of SGD optimizer

SGD has difficulty in areas where the surface is much
more curved in one dimension than another, and their
common around local minima. In these cases, SGD
wobbles through the slopes of these regions and makes
only hesitant progress towards local optimums. One
method that can help the network get out of these traps is
to use the Momentum Coefficient.

𝑣𝑣𝑡𝑡 = 𝛾𝛾𝑣𝑣𝑡𝑡−1 + 𝜂𝜂𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜃𝜃 = 𝜃𝜃 − 𝑣𝑣𝑡𝑡 (7)

or 𝛾𝛾 є [0; 1] represents the Momentum coefficient.
When using Momentum, one pushes a ball down a

hill. The ball accumulates Momentum as it rolls downhill
becoming faster and faster. The same thing happens when
updating the settings. Momentum increases for
dimensions whose gradient points in the same direction
and reduces updates whose gradient changes direction
[16]. The result is faster convergence and reduced
oscillations, based on the most relevant new parameters,
increases the Learning rate with Momentum defined in
Table. 5.

Table 5. SGD acceleration by Momentum.

Optimizer Lr Momentum
SGD 0.001 0.9

5.2 Model Transfer Learning Pytorch

ResNet allows the learning of very deep networks more
than 150 layers. One of the difficulties in learning such
deep networks is related to gradient backpropagation. The
deeper the network is the lower, the gradient is for updating
the weights of the lower layers the first layers. Thus, an
architecture that is too deep does not update these layers.
The idea developed in ResNet is the use of residual
connections allowing better optimization of very deep
networks. A residual connection allows us to pass the input
in two convolution filters, but also to pass this input directly

5

E3S Web of Conferences 234, 00064 (2021)	 https://doi.org/10.1051/e3sconf/202123400064
ICIES 2020

ICIES’2020

to the next layers. This is done, by adding the result of the
two convolution layers and the input as shown in Figure 2.
With this architecture, the authors demonstrate the interest
in learning very deep networks due to their performances
and propose a way to learn them efficiently. It also uses
global AVG pooling instead of PMC at the end. The error
rate in ImageNet visual recognition challenge, Deep
Learning exceeds human performance.

Table 6. ResNet-34 Architecture update.

Layer (type) Output Shape Param #

model_1(Resnet34) [-1, 512, 7, 7] 21,284,672
AdaptiveAvgPool2d-123 [-1, 512, 1, 1] 0
Linear-124 [-1, 43] 22,059
Total params: 21,306,731
Trainable params: 21,306,731
Non-trainable params: 0
Input size (MB): 0.57
Forward/backward pass size (MB): 96.28
Params size (MB): 81.28
Estimated Total Size (MB): 178.13

 The main flaw of VGG-16 is the imposing size of the
network about 500 MB in Table.2, compared to other
networks such as ResNet-34 about 178 MB. Also, the
computing power needed for one pass is important, as
shown in the Table. 6. However, it is a robust and relatively
readable architecture for a deep network. It is not the best
model, but it is a good reference for the first estimation of
possible performance on classification as it is easy and
quick to implement. ResNet on paper is mainly explained
for the ImageNet dataset. The experiments with sets of
ResNets, to do it on traffic road signs. Since the input
images of the panels are (32x32), we trying to make
transformations and dimensionality compatible with the
architecture used which admits (224x224). To have control
over modifications can be applied for the ResNet, the
requires to understand the details. The majority of
researchers change the dimension but make the efficiency
of the network to solve the problem posed low as shown
previously for VGG-16.

Fig. 7. Accuracy function of ResNet-34 with SGD.

The problem is solved by ResNet-34, which is the
famous known disappearing gradient for accuracy and loss
in Figure. 7 with a Figure. 8. Indeed, when the network is
too deep, the gradients from which the loss function is
calculated, easily reduced nearly to zero after several
applications of the chain rule. This result on the weights
never updates its values, and therefore no learning is done,
with ResNet-34, the gradients can pass directly through the
jump back connections of the subsequent layers to the
initial filters. The pre-trained model is so good, that got

very high accuracy and low loss after 50 epochs.
Unfortunately, the validation set is too small to get some
meaningful metrics from it in the Figure. 8. The AI
convergence over time as a function of the chosen learning
rate, and the optimizer SGD thus for a learning speed of
0.001, the reach in just over 50 epochs 97% accuracy, but
when using Adam, 70 % accuracy with Learning rate
0.0001 and RMSprop 35% accuracy with learning rate
0.0002. So, when a change model has improved the work
in the Framework of Pytorch, for SGD optimizer, we
would have the algorithm converges to the same accuracy.
It is then longer necessary to perform the work in future
the AI for real training.

Fig. 8. The loss function of ResNet-34 with SGD.

6 Results and Experiments

6.1 Evaluation performance of a better model

The objective of this step is to make the global test of the
learning model built in the previous steps. Before going
on to the learning, the image data is divided into three
subsets, one for learning (60%), one for testing (20%), and
one for validation (20%). The learning is done through the
images that make up the main part of the dataset, and since
this is a supervised method. For the evaluation model, it
receives the test images as input, it gives as output a vector
of probabilities belonging to the images to each class. In
this section, present the Confusion Matrix of Transfer
Learning. According to Figure.9, the ResNet-34 model
had classified all test images correctly, set to some
classes. We observe confusion between the Low and
Medium class. ResNet-34, the matrix shows the
performance improvement with cross-validation. This is
shown by the diagonal of the matrix which proves that all
images were correctly classified. The encouragement to
keep in mind the possible strategies introduced in the
previous fine-tuning, for feature extraction.

Fig. 9. Confusion Matrix of ResNet-34.

6

E3S Web of Conferences 234, 00064 (2021)	 https://doi.org/10.1051/e3sconf/202123400064
ICIES 2020

ICIES’2020

6.2 Classification report

The classification report shows us that the ResNet-34
model is perfect, can see in Figure.10, that the accuracy
of the model reaches 99.74%. Moreover, to check the rate
agreement or concordance, also can calculate the KAPPA
coefficient [17] based on this equation below.

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
(𝑃𝑃0 − 𝑃𝑃𝑒𝑒)
(1 − 𝑃𝑃𝑒𝑒) (8)

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑃𝑃0 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖

𝑟𝑟

𝑖𝑖=1

 𝑃𝑃𝑒𝑒 = ∑ 𝑝𝑝𝑖𝑖. 𝑝𝑝𝑖𝑖

𝑟𝑟

𝑖𝑖=1

 𝑟𝑟 ∶ The number of ways of judging.
𝑃𝑃0: The proportion of agreement observed.
𝑃𝑃𝑒𝑒: The proportion of random agreement or concordance

is expected under the assumption of independence of
judgments.
The KAPPA coefficient in our case is 99.73%, the

score is higher than 81%, is an excellent degree in the
agreement but more importantly, the accuracy in
identifying images, that are traffic road signs is what
makes it a reliable removal filter.

Fig. 10. Report classification for each class.

6.4 Tests results with images of the test dataset

Visualization performance of the model in classifications
images test dataset in Figure.11, the results prediction the
model, it was able to correctly guess 4 of the traffic road
signs, which gives an accuracy of 100%. This compares
favorably to the accuracy on the test set of 99.73%.

Fig. 11. Classification of test images.

6.4 Test results with new images

In this part, shows certain the model is when predicting
each of the new images taking from the real world or real-
time, by looking at the softmax probabilities for each
prediction class. To evaluate the model confidence in
classifying traffic road signs, the new images set, are the
“Yield” and “Crossing Children” traffic road signs.

Table 7. Classification of new images.

Image Prediction

This result is expected given in Table.7, the new

images used, in this test has some of the noise, so it is very
hard to classify correctly. For this, that improves the
confidence for recognition. The model is performing very
well, for classification “Yield” signs in the prediction in
the correct traffic signs by the accuracy of 100%. For the
“Children Crossing” sign we have nearly 90% of
prediction correctly and 10% by confusion with a class of
“Bicycle Crossing” class, this could be corrected by using
a deeper residual architecture, which contains more layers
like ResNet-101 or ResNet-150, which perform better
with a more powerful GPU to get very satisfying results.

7

E3S Web of Conferences 234, 00064 (2021)	 https://doi.org/10.1051/e3sconf/202123400064
ICIES 2020

ICIES’2020

6 Conclusion
This research work is part of the classification, as well as
image classification techniques. In the paper, the dealt with
an issue that affects the whole world, which is a great
challenge facing all societies and research laboratories today.
The adopted a research methodology that consists of
designing and implementing a large system of automatic
image classifications including an automatic prediction
perspective. Indeed, the system is based on an approach that
exploits the Transfer Learning technique for automatic
learning, which extracts low-level visual characteristics from
the image of traffic road signs in different environments. This
module aims to create, train, and evaluate a classifier model
with residual architecture. Therefore, conclude that image
classification with deep supervised learning methods is an
important avenue of research.

Our work opens scientific perspectives in the short and
long term. In the following, the highlight perspectives that
believe are relevant to the evolution of the systems
developed in this project. Firstly, it would be interesting to
work with a broader and more variant image base. This work
is completed by implementation and improves the
performance of Deep Learning by creation a CNN model,
second perspective appears is to highlight the execution time,
and detection and recognize Traffic Roads Signs in Real-
Time with high precision [18].

References
1. J. Stilgoe, ‘Machine learning, social learning and the

governance of self-driving cars’, Social Studies of
Science, p. 32.

2. A. Barodi, A. Bajit, M. Benbrahim, and A. Tamtaoui,
‘An Enhanced Approach in Detecting Object Applied to
Automotive Traffic Roads Signs’, in 2020 IEEE 6th
International Conference on Optimization and
Applications (ICOA), Beni Mellal, Morocco, Apr.
2020, pp. 1–6, doi:
10.1109/ICOA49421.2020.9094457.

3. S. Shi, Q. Wang, P. Xu, and X. Chu, ‘Benchmarking
State-of-the-Art Deep Learning Software Tools’, in
2016 7th International Conference on Cloud Computing
and Big Data (CCBD), Macau, China, Nov. 2016, pp.
99–104, doi: 10.1109/CCBD.2016.029.

4. J. Chi, E. Walia, P. Babyn, J. Wang, G. Groot, and M.
Eramian, ‘Thyroid Nodule Classification in Ultrasound
Images by Fine-Tuning Deep Convolutional Neural
Network’, J Digit Imaging, vol. 30, no. 4, pp. 477–486,
Aug. 2017, doi: 10.1007/s10278-017-9997-y.

5. G. Liang and L. Zheng, ‘A transfer learning method
with deep residual network for pediatric pneumonia
diagnosis’, Computer Methods and Programs in
Biomedicine, vol. 187, p. 104964, Apr. 2020, doi:
10.1016/j.cmpb.2019.06.023.

6. K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, and
A. Agrawal, ‘Deep Convolutional Neural Networks
with transfer learning for computer vision-based data-
driven pavement distress detection’, Construction and

Building Materials, vol. 157, pp. 322–330, Dec. 2017,
doi: 10.1016/j.conbuildmat.2017.09.110.

7. A. Paszke et al., ‘PyTorch: An Imperative Style, High-
Performance Deep Learning Library’, p. 12.

8. A. Bajit, M. Nahid, A. Tamtaoui, and M. Benbrahim, ‘A
Psychovisual Optimization of Wavelet Foveation-
Based Image Coding and Quality Assessment Based on
Human Quality Criterions’, Adv. sci. technol. eng. syst.
j., vol. 5, no. 2, pp. 225–234, 2020, doi:
10.25046/aj050229.

9. Abderrahim. Bajit, Mohammed. Najid, Ahmed.
Tamtaoui, and Abdellah. Lassioui, ‘A Perceptually
Optimized Embedded Image Coder and Quality
Assessor Based Both on Visual Tools’, Adv. sci.
technol. eng. syst. j., vol. 4, no. 4, 2019, doi:
10.25046/aj040428.

10. S. De, A. Mukherjee, and E. Ullah, ‘Convergence
guarantees for RMSProp and ADAM in non-convex
optimization and an empirical comparison to Nesterov
acceleration’, arXiv:1807.06766 [cs, math, stat], Nov.
2018, Accessed: Aug. 08, 2020. [Online].

11. M. Anthimopoulos, S. Christodoulidis, L. Ebner, A.
Christe, and S. Mougiakakou, ‘Lung Pattern
Classification for Interstitial Lung Diseases Using a
Deep Convolutional Neural Network’, IEEE Trans.
Med. Imaging, vol. 35, no. 5, pp. 1207–1216, May
2016, doi: 10.1109/TMI.2016.2535865.

12. A. W. Senior et al., ‘Improved protein structure
prediction using potentials from deep learning’, Nature,
vol. 577, no. 7792, pp. 706–710, Jan. 2020, doi:
10.1038/s41586-019-1923-7.

13. D. P. Kingma and J. Ba, ‘Adam: A Method for
Stochastic Optimization’, arXiv:1412.6980 [cs], Jan.
2017, Accessed: Aug. 08, 2020. [Online]. Available:
http://arxiv.org/abs/1412.6980.

14. G. Pandey, A. Baranwal, and A. Semenov, ‘Identifying
Images with Ladders Using Deep CNN Transfer
Learning’, in Intelligent Decision Technologies 2019,
vol. 142, I. Czarnowski, R. J. Howlett, and L. C. Jain,
Eds. Singapore: Springer Singapore, 2020, pp. 143–153.

15. K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep Residual
Learning for Image Recognition’, arXiv:1512.03385
[cs], Dec. 2015, Accessed: Aug. 08, 2020. [Online].
Available: http://arxiv.org/abs/1512.03385.

16. D. Li and Q. Chen, ‘Deep Reinforced Attention
Learning for Quality-Aware Visual Recognition’,
arXiv:2007.06156 [cs], Jul. 2020, Accessed: Aug. 08,
2020.

17. J. Cohen, ‘A Coefficient of Agreement for Nominal
Scales’, Educational and Psychological Measurement,
vol. 20, no. 1, pp. 37–46, Apr. 1960, doi:
10.1177/001316446002000104.

18. A. Barodi, A. Bajit, M. Benbrahim and A. Tamtaoui
"Applying Real-Time Object Shapes Detection To
Automotive Traffic Roads Signs.," 2020 International
Symposium on Advanced Electrical and
Communication Technologies (ISAECT), Morocco,
Kenitra, 2020, pp. 1-6, --Proceeding

8

E3S Web of Conferences 234, 00064 (2021)	 https://doi.org/10.1051/e3sconf/202123400064
ICIES 2020

