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Abstract. This paper represents a study for the realization of a system based on Artificial Intelligence, which 
allows the recognition of traffic road signs in an intelligent way, and also demonstrates the performance of 
Transfer Learning for object classification in general. When systems are trained on the aspects of human 
visualization (HVS), which helps or generates the same decisions, the construct robust and efficient systems. 
This allows us to avoid many environmental risks, both for weather conditions, such as cloudy or rainy 
weather that causes obscured vision of signs, but the main objective is to avoid all road risks that are dangerous 
to achieve road safety, such as accidents due to non-compliance with traffic rules, both for vehicles and 
passengers. However, simply collecting road signs in different places does not solve the problem, an 
intelligent system for classifying road signs is needed to improve the safety of people in its environment. This 
study proposed a traffic road sign classification system that extracts visual characteristics from a Convolution 
Neural Network (CNN) classification model. This model aims to assign a class to the image of the road sign 
through the classifier with the most efficient optimized. Then the evaluation of its effectiveness according to 
several criteria, using the Confusion Matrix and the classification report, with an in-depth analysis of the 
results obtained by the images that are taken from the urban world.  The results obtained by the system are 
encouraging in comparison with the systems developed in the scientific literature, for example, the Advanced 
Driving Assistance Systems (ADAS) of the sector automobile. 

1 Introduction  
Machine learning, which is one of the sub-domains of 
Artificial Intelligence, aims at automatically extracting 
and exploiting the information present in a dataset for the 
automobile sector [1]. It differs from traditional 
approaches and facilitates the use of machines or systems 
in building models from sample data to automate 
decision-making processes based on the data entered [2]. 
Learning algorithms can be categorized according to the 
type of learning they employ. Training a Convolutional 
Neural Network is very expensive. The more layers are 
stacked, the more convolutions and parameters to be 
optimized. The machine must be able to store several 
gigabytes of data and do the calculations efficiently. 
That's why hardware manufacturers are stepping up 
efforts to provide high-performance, GPU graphics 
processors that can quickly drive a Deep Neural Network 
by parallelizing the computations [3]. Transfer Learning 
allows you to do Deep Learning without having to spend 
a calculating.  

The principle is to use the knowledge acquired by a 
Neural Network when solving a problem to solve another 
more or less similar one [4]. In this way, a transfer of 
knowledge is achieved. Like many things in Machine 
Learning, this technique is inspired by human behavior, 

for example, when the driver is driving the car in a very 
dangerous situation, so he has to react as quickly as 
possible, so as not to have very serious consequences. In 
addition to speeding up the training of the network, 
Transfer Learning also helps to avoid overfitting [5]. 
Indeed, when the collection of input images is small, it is 
strongly advised not to train the Neural Network from 
scratch. Nowadays, we can easily retrieve it, and 
especially in Deep Learning libraries, such as Keras [6]or 
Pytorch [7], we can exploit the pre-trained Neural 
Network in several ways, depending on the size of the 
input data set and its similarity with the one used during 
pre-training. This strategy consists of using the features of 
the pre-trained network to represent the images of the new 
problem. To do this, remove the last fully-connected layer 
and set all other parameters [8]. This truncated network 
will then calculate the representation of each input image 
from the features already learned during pre-training. A 
classifier, randomly initialized, is then trained on these 
representations to solve the new problem when the new 
image collection is small and similar to the pre-training 
images. Indeed, training the network on so few images is 
dangerous since the risk of overfitting, it’s very important 
point in Deep Learning. Also, if the new images look like 
the old ones, then they can be represented by the same 
features [9]. 
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2 Strategy  

In this system in Figure.1, the explore the fine-tuning 
technique, that allows us to exploit a pre-trained 
Convolutional Neural Network, and adapt it to a new 
classification case. The system is composed of two 
phases, each phase contains a module. The first phase is 
devoted to learning the model. This phase starts with an 
essential step which is the pre-processing of the image 
base. Then we obtain a new pre-processed image base, 
these images go through two other stages. The first step is 
to adapt the architecture of the pre-trained network to the 
new classification case. This is done by changing the 
network architecture. In this step, we explore two 
different Convolutional Neural Network architectures 
namely VGG-16, ResNet-34. The second stage consists 
of training the Convolutional Neural Network on a 
learning basis. During this step, the network parameters 
are adjusted to the new problem. Finally, after 
performance evaluation, the trained model is deployed. 

 
Fig. 1. The approach for the realization of the system. 

 When the new test images arrive, the second phase of 
the system is triggered to process the request following 
the same steps of the pre-processing previously applied 
during training. This is followed by the prediction and 
classification of each image. The architecture of the 
approach proposed in this work is based on the Transfer 
Learning technique. From a set of learning images, the 
system aims to deduce a link between the characteristics 
of each image and its class.    

3 Methodology  
Machines learn employing a loss function. This is a 
method for evaluating how well a specific algorithm 
model the data provided. If the predictions deviate too 
much from the actual results, the loss function would 
cover a very large number of them. Gradually, using a 
non-convex optimization function, the loss function 
learns how to reduce the forecast error [10]. There are 
several loss functions in addition to Categorical Cross-
Entropy implemented in the model, and the learning rate 
is probably the most important aspect of gradient descent, 
along with other optimizers, and it comes down to 
experimentation and intuition [11]. The choice of the 
optimization algorithm can make the difference between 
achieving good or high accuracy in hours or days. Among 
these algorithms. 

3.1 Gradient Descent Optimizer  

This technique has been declined in many algorithms with 
their specificities, gradient descent by batch, stochastic 
(SGD), and mini-batch. In practice, gradient descent 
consists of calculating the gradient of the cost function 
with the derivative of the error concerning. The AI 
parameters that can be updated, then updating the 
parameters, for example, the weights an Artificial Neural 
Network, in the direction that will decrease the error, it is 
fast, efficient, robust, and above, all flexible in the sense, 
that it is used in many algorithms, from Deep Learning 
with Neural Networks to the more traditional Machine 
Learning [12]. Stochastic Gradient Descent is the simplest 
optimization algorithm to find parameters that minimize, 
the given cost function. SGD (the Stochastic Gradient 
Descent) updates the parameters for each example in the 
data set 𝑥𝑥(𝑖𝑖) and label 𝑦𝑦(𝑖𝑖). 

                        𝜃𝜃 = 𝜃𝜃 − 𝜂𝜂. 𝛻𝛻𝜃𝜃. 𝐽𝐽(𝜃𝜃; 𝑥𝑥(𝑖𝑖);  𝑦𝑦(𝑖𝑖)) (1) 

When lowering the learning rate 𝜂𝜂 , SGD shows the same 
convergence as the batch gradient goes down. 

3.2 Adaptative Momentum estimation Optimizer  

ADAM this method calculates adaptive learning rates, for 
each parameter, the keeps an exponentially decreasing 
average of squared and past gradients [13]. These two 
averages are estimates of the first moment (the mean), the 
second moment (the uncentered variance) of the gradients. 
This is an update the optimizer RMSProp, this optimizer is 
based essentially on the current averages of gradients and 
gradient moments, with the parameters, are 𝑤𝑤𝑡𝑡which is 
linked to a loss function 𝐿𝐿𝑡𝑡, where t indexes the current 
training iteration indexed to 0, the parameters of Adam is 
given by these equations. 

                  𝑚𝑚⍵
(𝑡𝑡+1) ⟵ 𝛽𝛽1𝑚𝑚⍵

(𝑡𝑡) + (1 − 𝛽𝛽1)𝛻𝛻⍵𝐿𝐿(𝑡𝑡) (2) 

                 𝑣𝑣⍵
(𝑡𝑡+1) ⟵ 𝛽𝛽2𝑣𝑣⍵

(𝑡𝑡) + (1 − 𝛽𝛽2)(𝛻𝛻⍵𝐿𝐿(𝑡𝑡))2 (3) 

            𝑚̂𝑚⍵ =  𝑚𝑚⍵
(𝑡𝑡+1)

1−𝛽𝛽1
  , 𝑣̂𝑣⍵ =  𝑣𝑣⍵

(𝑡𝑡+1)

1−𝛽𝛽2
 , ⍵(𝑡𝑡) ⟵ ⍵(𝑡𝑡+1) − 𝜂𝜂 𝑚̂𝑚⍵

√𝑣̂𝑣⍵+𝜀𝜀
 

 (4) 
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where ε is a small scalar (e.g. 10−8 used to prevent 
division by 0, and 𝛽𝛽1 (e.g. 0.9) and 𝛽𝛽2(e.g. 0.999), without 
forgetting its factors of gradients and gradient moments 
which serves the squaring and squaring is done by each 
element 

3.3 Resilient Momentums prop Optimizer  

RMSProp also tries to dampen the oscillations, but 
differently than the amount of movement. RMSprop also 
removes the need to adjust the learning rate and does so 
automatically. This RMSprop algorithm is an alternative 
version of Adagrad and looks like going down a gradient 
with momentum, the difference is in the mathematical 
calculation of the gradient. RMSProp is a method with a 
learning rate that adapts to each parameter. Dividing the 
learning rate for the weight, by a moving average the 
amplitudes of the recent gradients for this weight, with the 
moving average are calculated in terms of the square 
averages, the good adaptation of learning rate 
demonstrated in its following equations. 

𝑣𝑣(𝑤𝑤, 𝑡𝑡) =  𝛾𝛾𝑣𝑣(𝑤𝑤, 𝑡𝑡 − 1) + (1 − 𝛾𝛾)(𝛻𝛻𝛻𝛻𝑖𝑖(𝑤𝑤))2      (5) 

where 𝛾𝛾 is the factor of forgetting with updated 
parameters. 

            ⍵𝑡𝑡 = ⍵𝑡𝑡−1 −
𝜂𝜂

√𝑣𝑣(⍵, 𝑡𝑡)
𝛻𝛻𝑄𝑄𝑖𝑖(⍵)                          (6) 

3.3 VGG-16 Architecture Description  

Table 1. VGG-16 ARCHITECTURE. 

Layer Types Output Shapes Parameters  

Input Layer (None, 32, 32, 3) 0 

 

Block1 

 

Conv2D 
(None, 32, 32, 64) 

1792 

Conv2D 36928 

MaxPooling2D (None, 16, 16, 64) 0 

Block2 

Conv2D 
(None, 16, 16, 128) 

73856 

Conv2D 147584 

MaxPooling2D (None, 8, 8, 128) 0 

Block3 

Conv2D 

(None, 8, 8, 256) 

295168 

Conv2D 590080 

Conv2D 590080 

Block3 
Conv2D (None, 8, 8, 256) 590080 

MaxPooling2D (None, 4, 4, 256) 0 

Block4 

Conv2D 

(None, 4, 4, 512) 

1180160 

Conv2D 2359808 

Conv2D 2359808 

Conv2D 2359808    

MaxPooling2D (None, 2, 2, 512)          0 

 

Block5 

Conv2D 

(None, 2, 2, 512)              

2359808    

Conv2D 2359808 

Conv2D 2359808 

Conv2D 2359808 

MaxPooling2D (None, 1, 1, 512)                   0 

Total parameters: 20,024,384/ Trainable parameters: 20,024,384 
Non-trainable parameters: 0 

VGG-16 consists of several layers, including 13 
convolution layers and 3 fully-connected layers. So, it has 
to learn the weights of 16 layers. It takes a 224 × 224 px 
color images as input and classifies it into one of 1000 
classes. It then returns a vector of size 1000, which 
contains the probabilities of belonging to each of the 
classes[14]. So, we will spend some time studying the 
configuration of the different layers of VGG-16. VGG-16 
is made of several layers, including 13 convolution layers 
and 3 fully-connected layers, in our case, we take a 32x32 
px color image and classifies it in one of the 43 classes. 
The architecture of VGG-16 is illustrated by the Table. 1 
below. Now that we've mastered the VGG-16 architecture, 
the fun part is the implementation. Implementing a Neural 
Network with Keras means creating a sequential model 
and enriching it with the corresponding layers in the right 
order. The most difficult step is to correctly define the 
parameters of each layer, hence the importance is 
understanding the network architecture. Finally, the ReLU 
layer is used just after the convolution layer, the argument 
activation ReLU is a very important activation function in 
Deep Learning. For example in Table.1, for the first 
convolution layer, the network has to learn 64 color filters 
thus depth 3 of size 3; as well as a bias parameter for each 
filter. This makes a total of (3*3*3) *64 + 64 = 1792 
parameters. 

3.4 ResNet34 Architecture Description  

ResNet-34 Unlike traditional sequential network 
architectures such as VGG. ResNet is rather a form of 
exotic architecture based on micro-architecture modules, 
also called network within network architectures. The term 
micro-architecture refers to the set of building blocks used 
to construct the network. A set of micro-architecture 
building blocks with the standard layers Convolution, 
Pooling, etc. leads to the macro-architecture, i.e. the end 
network itself. The papers describe these in detail of each 
step, that ResNet consists of an orange convolution and 
pooling step followed by 4 layers of similar behavior. Each 
layer follows the same pattern. The perform a 3x3 
convolution with a fixed function map dimension (F) 64, 
128, 256, 512 respectively, bypassing the input every 2 
convolutions. Besides, the width (W) and height (H) 
dimensions remain constant throughout the layer. The 
dotted line is there precisely because the input volume 
dimension has changed, a reduction because of the 
convolution [15]. Note that this reduction between layers 
is obtained by increasing the stride, from 1 to 2, at the first 
convolution of each layer; instead of a clustering 
operation, what are used to seeing as samplers. The 
ResNet-34 architecture is illustrated in the diagrams below 
in figure.2. 

 
Fig. 2. Residual connection. 

This makes it easier to understand the mechanism of a 
particular model, to adapt it to our particular needs. The 
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next section shows how to simply change the strengths of 
the dataset to change the architecture of the whole model. 
Also, trying to follow the notation close to the official 
implementation of PyTorch to facilitate its later 
implementation on Python. All the operations of 
convolutions, effected with batch normalization and ReLU 
activation to an input, except for the last operation in a 
block, which does not have the ReLU, we are faced with a 
base now.  

4 Related work 
The experimentation is done in the Keras and PyTorch 
Frameworks, which are very intuitive libraries of Deep 
Learning in Python. The focus of our study is VGG-16, a 
version for implementing Transfer Learning in 
ASUSTEK Computer i7-7500U GPU NVIDIA 
GEFORCE 920M. Python offers several libraries and has 
an active community. Regarding data processing, the 
Numpy, Pandas, and Matplotlib are libraries for matrix 
calculations, data analysis, and visualization. For Deep 
Learning, python has working environments such as 
Keras and Pytorch. These work environments are very 
useful because they allow easy management of the 
backpropagation algorithm for large Neural Networks, 
VGG-16, and ResNet-34-. They also ensure the 
parallelization of calculations on the GPU.                              

4.1 Model Transfer Learning Keras  

The data are limited, then the proposition is to take a VGG 
network and to train only the top classifier part of the 
network, indeed the 2D convolution part already does a 
huge work of feature extraction on an already-trained 
network, and is already able to classify a lot of objects. 
The adaptation of VGG-16 to our needs by replacing only 
the top layers, in the situation has very few training 
images. Also artificially inflate the training set by reusing 
the same images several times in  Keras. The VGG-16 is 
trained on ImageNet, which offers in our case 43 classes 
in output. The first step is to remove the top layers, both 
fully connected and softmax, from a pre-trained VGG-16 
and replace them with our grading network. Considering 
the architecture, VGG-16 will simply be charged, not 
freezing the fully connected layers (FC). Redefining the 
network allows us to test different architectures that can 
add only the softmax or change the number of neurons in 
the FC. This model is the result of different experiments 
in Table. 2. 

Table 2. VGG-16 Architecture update. 

Layer Types   Output Shapes               Parameters    
Model VGG16 

(None, 512) 

14714688 
Dense 262656 

Dropout 0 
Dense 262656   

Dropout 0   
Dense (None, 43)                      22059 

Total parameters: 15,262,059 
Trainable parameters: 547,371 
Non-trainable parameters: 14,714,688 

4.2 Implementation with Adam optimizer 

   This section is for the implementation of the VGG16 net 
architecture with optimizer Adam. In practice, this is the 
most used optimization especially for Deep Learning in 
Neural Networks, because of its efficiency and stability, 
the Transfer Learning, even if, as we will see, it is not 
perfect, also can see how to optimize our classifier. The 
majority of scientific researchers recommend us when the 
learning rate is reduced, this affects the training by given 
game, in this case, the value in Table.3 without forgetting 
Adam's betas. 

Table 3. ADAM acceleration by betas. 

Optimizer Lr Beta_1 Beta_2 

Adam 0.0001 0.9 0.999 
 

 
Fig. 3. Accuracy function of VGG-16 with ADAM. 

 
Fig. 4. The loss function of VGG-16 with ADAM.  

 For Adam optimizer for Figure.3 and Figure.4. Note 
that Adam combines the ideas of Adagrad and RMSprop. 
Thus, in addition to the classifier, the new images are 
trained on the unfixed layers, which generally correspond 
to the highest layers of the network. This strategy is used 
when the new image collection is small but very different 
from the pre-training images. On the one hand, as there are 
few training images, training the whole network is not 
feasible, so the caused the overfitting. On the other hand, 
it also eliminates, since the new images have very little in 
common with the old ones, using the optimizer Adam is 
not a perfect idea, but remember that the features of the 
lower layers are simple and generic so can be found in two 
very different images, while those of the upper layers are 
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complex and specific to the problem. So, the strategy of 
setting, change the optimizer, and training the classifier. 

4.3 Implementation with RMSprop optimizer 

This part starts by using the architecture of VGG16 net 
with optimizer RMSprop, the model is the same, in the 
same direction as the previous ones, with a reduction in the 
learning rate, and defined the essential parameters of the 
optimizer, are rho and epsilon defined all in the Table. 4, 
at which we go down the curve of accuracy and loss for 
visualization the effect of changing these updates 
parameters. 

Table 4. RMSprop acceleration by Rho. 

Optimizer Lr Rho Epsilon 

RMSprop 2e-3 0.9 1e-07 
 

 
Fig. 5. Accuracy function of VGG-16 with RMSprop. 

 
Fig. 6. The loss function of VGG-16 with RMSprop. 

The RMSProp optimizer takes the stress out of 
choosing the right learning speed. Now that we know a bit 
more about optimizers, let's take a look at RMSProp, the 
evolution that corrects Adam's main weakness, his strong 
dependence on learning speed. Indeed, as shown in 
Figure.5 and Figure.6, AI precision learning curves on the 
validation data with Adam, can conclude that final results 
depend strongly on the choice of the learning rate of 
algorithm. Its far from the risk of overfitting, while there 
are some spikes in the validation accuracy and loss, 
overall, that it is much closer to the training accuracy, with 
the loss indicating obtained of model, that generalizes 
much better as compared to previous model. But the 
remark can tack at the high score of accuracy is 35%, it’s 

not better, because it doesn’t take time enough. The idea 
now, to change this model by using the model profound 
which is residual in Pytorch Framework, and evaluate the 
performances on test dataset. 

5 Discussion 
The observation that it was logical to state that the deeper, 
the better concerning Convolutional Neural Networks. 
This makes sense, models should be more capable, their 
flexibility to adapt to any space increases, a larger space 
of parameters to explore. However, it has been noticed 
that after a certain depth, performance degrades. It was 
one of VGG's bottlenecks. The couldn't get as far as to 
want, because starting to lose the ability to generalize with 
SGD, this method is faster but too frequent parameter 
updates cause the objective function to oscillate, these 
oscillations, on the one hand, allow landing in potentially 
better local minima, but on the other hand, make 
convergence more difficult.   

5.1 Amelioration of SGD optimizer 

SGD has difficulty in areas where the surface is much 
more curved in one dimension than another, and their 
common around local minima. In these cases, SGD 
wobbles through the slopes of these regions and makes 
only hesitant progress towards local optimums. One 
method that can help the network get out of these traps is 
to use the Momentum Coefficient. 

𝑣𝑣𝑡𝑡 = 𝛾𝛾𝑣𝑣𝑡𝑡−1 + 𝜂𝜂𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃)   𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝜃𝜃 = 𝜃𝜃 − 𝑣𝑣𝑡𝑡     (7) 

or 𝛾𝛾 є [0; 1] represents the Momentum coefficient. 
When using Momentum, one pushes a ball down a 

hill. The ball accumulates Momentum as it rolls downhill 
becoming faster and faster. The same thing happens when 
updating the settings. Momentum increases for 
dimensions whose gradient points in the same direction 
and reduces updates whose gradient changes direction 
[16]. The result is faster convergence and reduced 
oscillations, based on the most relevant new parameters, 
increases the Learning rate with Momentum defined in 
Table. 5. 

Table 5. SGD acceleration by Momentum. 

Optimizer Lr Momentum 
SGD 0.001 0.9 

5.2 Model Transfer Learning Pytorch 

ResNet allows the learning of very deep networks more 
than 150 layers. One of the difficulties in learning such 
deep networks is related to gradient backpropagation. The 
deeper the network is the lower, the gradient is for updating 
the weights of the lower layers the first layers. Thus, an 
architecture that is too deep does not update these layers. 
The idea developed in ResNet is the use of residual 
connections allowing better optimization of very deep 
networks. A residual connection allows us to pass the input 
in two convolution filters, but also to pass this input directly 
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to the next layers. This is done, by adding the result of the 
two convolution layers and the input as shown in Figure 2. 
With this architecture, the authors demonstrate the interest 
in learning very deep networks due to their performances 
and propose a way to learn them efficiently. It also uses 
global AVG pooling instead of PMC at the end. The error 
rate in ImageNet visual recognition challenge, Deep 
Learning exceeds human performance. 

Table 6. ResNet-34 Architecture update. 

Layer (type)   Output Shape          Param # 

model_1(Resnet34)    [-1, 512, 7, 7] 21,284,672 
AdaptiveAvgPool2d-123             [-1, 512, 1, 1]                0 
Linear-124                             [-1, 43] 22,059 
Total params: 21,306,731 
Trainable params: 21,306,731 
Non-trainable params: 0 
Input size (MB): 0.57 
Forward/backward pass size (MB): 96.28 
Params size (MB): 81.28 
Estimated Total Size (MB): 178.13 

 The main flaw of VGG-16 is the imposing size of the 
network about 500 MB in Table.2, compared to other 
networks such as ResNet-34 about 178 MB. Also, the 
computing power needed for one pass is important, as 
shown in the Table. 6. However, it is a robust and relatively 
readable architecture for a deep network. It is not the best 
model, but it is a good reference for the first estimation of 
possible performance on classification as it is easy and 
quick to implement. ResNet on paper is mainly explained 
for the ImageNet dataset. The experiments with sets of 
ResNets, to do it on traffic road signs. Since the input 
images of the panels are (32x32), we trying to make 
transformations and dimensionality compatible with the 
architecture used which admits (224x224). To have control 
over modifications can be applied for the ResNet, the 
requires to understand the details. The majority of 
researchers change the dimension but make the efficiency 
of the network to solve the problem posed low as shown 
previously for VGG-16. 

 
Fig. 7. Accuracy function of ResNet-34 with SGD. 

The problem is solved by ResNet-34, which is the 
famous known disappearing gradient for accuracy and loss 
in Figure. 7 with a Figure. 8. Indeed, when the network is 
too deep, the gradients from which the loss function is 
calculated, easily reduced nearly to zero after several 
applications of the chain rule. This result on the weights 
never updates its values, and therefore no learning is done, 
with ResNet-34, the gradients can pass directly through the 
jump back connections of the subsequent layers to the 
initial filters. The pre-trained model is so good, that got 

very high accuracy and low loss after 50 epochs. 
Unfortunately, the validation set is too small to get some 
meaningful metrics from it in the Figure. 8. The AI 
convergence over time as a function of the chosen learning 
rate, and the optimizer SGD thus for a learning speed of 
0.001, the reach in just over 50 epochs 97% accuracy, but 
when using Adam, 70 % accuracy with Learning rate 
0.0001 and RMSprop 35% accuracy with learning rate 
0.0002. So, when a change model has improved the work 
in the Framework of Pytorch, for SGD optimizer, we 
would have the algorithm converges to the same accuracy. 
It is then longer necessary to perform the work in future 
the AI for real training. 

 
Fig. 8. The loss function of ResNet-34 with SGD. 

6 Results and Experiments 

6.1 Evaluation performance of a better model 

The objective of this step is to make the global test of the 
learning model built in the previous steps. Before going 
on to the learning, the image data is divided into three 
subsets, one for learning (60%), one for testing (20%), and 
one for validation (20%). The learning is done through the 
images that make up the main part of the dataset, and since 
this is a supervised method. For the evaluation model, it 
receives the test images as input, it gives as output a vector 
of probabilities belonging to the images to each class. In 
this section, present the Confusion Matrix of Transfer 
Learning. According to Figure.9, the ResNet-34 model 
had classified all test images correctly, set to some 
classes. We observe confusion between the Low and 
Medium class. ResNet-34, the matrix shows the 
performance improvement with cross-validation. This is 
shown by the diagonal of the matrix which proves that all 
images were correctly classified. The encouragement to 
keep in mind the possible strategies introduced in the 
previous fine-tuning, for feature extraction. 
 

 
Fig. 9. Confusion Matrix of ResNet-34. 
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6.2 Classification report  

The classification report shows us that the ResNet-34 
model is perfect, can see in Figure.10, that the accuracy 
of the model reaches 99.74%. Moreover, to check the rate 
agreement or concordance, also can calculate the KAPPA 
coefficient [17] based on this equation below. 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
(𝑃𝑃0 − 𝑃𝑃𝑒𝑒)
(1 − 𝑃𝑃𝑒𝑒)             (8) 

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑃𝑃0 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖

𝑟𝑟

𝑖𝑖=1

   𝑃𝑃𝑒𝑒 = ∑ 𝑝𝑝𝑖𝑖. 𝑝𝑝𝑖𝑖

𝑟𝑟

𝑖𝑖=1

       

 𝑟𝑟 ∶ The number of ways of judging. 
𝑃𝑃0: The proportion of agreement observed. 
𝑃𝑃𝑒𝑒: The proportion of random agreement or concordance 

is expected under the assumption of independence of 
judgments. 
The KAPPA coefficient in our case is 99.73%, the 

score is higher than 81%, is an excellent degree in the 
agreement but more importantly, the accuracy in 
identifying images, that are traffic road signs is what 
makes it a reliable removal filter. 

 
Fig. 10. Report classification for each class. 

6.4 Tests results with images of the test dataset 

Visualization performance of the model in classifications 
images test dataset in Figure.11, the results prediction the 
model, it was able to correctly guess 4 of the traffic road 
signs, which gives an accuracy of 100%. This compares 
favorably to the accuracy on the test set of 99.73%. 

 
Fig. 11. Classification of test images. 

6.4 Test results with new images 

In this part, shows certain the model is when predicting 
each of the new images taking from the real world or real-
time, by looking at the softmax probabilities for each 
prediction class. To evaluate the model confidence in 
classifying traffic road signs, the new images set, are the 
“Yield” and “Crossing Children” traffic road signs.  

Table 7. Classification of new images. 

Image Prediction 

 

 

 

 

 
This result is expected given in Table.7, the new 

images used, in this test has some of the noise, so it is very 
hard to classify correctly. For this, that improves the 
confidence for recognition. The model is performing very 
well, for classification “Yield” signs in the prediction in 
the correct traffic signs by the accuracy of 100%. For the 
“Children Crossing” sign we have nearly 90% of 
prediction correctly and 10% by confusion with a class of 
“Bicycle Crossing” class, this could be corrected by using 
a deeper residual architecture, which contains more layers 
like ResNet-101 or ResNet-150, which perform better 
with a more powerful GPU to get very satisfying results. 
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6 Conclusion 
This research work is part of the classification, as well as 
image classification techniques. In the paper, the dealt with 
an issue that affects the whole world, which is a great 
challenge facing all societies and research laboratories today. 
The adopted a research methodology that consists of 
designing and implementing a large system of automatic 
image classifications including an automatic prediction 
perspective. Indeed, the system is based on an approach that 
exploits the Transfer Learning technique for automatic 
learning, which extracts low-level visual characteristics from 
the image of traffic road signs in different environments. This 
module aims to create, train, and evaluate a classifier model 
with residual architecture. Therefore, conclude that image 
classification with deep supervised learning methods is an 
important avenue of research.  

Our work opens scientific perspectives in the short and 
long term. In the following, the highlight perspectives that 
believe are relevant to the evolution of the systems 
developed in this project. Firstly, it would be interesting to 
work with a broader and more variant image base. This work 
is completed by implementation and improves the 
performance of Deep Learning by creation a CNN model, 
second perspective appears is to highlight the execution time, 
and detection and recognize Traffic Roads Signs in Real-
Time with high precision [18]. 
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