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Abstract. Due to its proven efficiency and computational speed, the most recent developed meta-heuristic 
optimization methods are widely used to better integrate renewable distributed generation (RDG) into the 
electricity grid. The main objective of this paper is to obtain a better knowledge of current trends in meta-
heuristics applied to optimally integrate RDGs to the distribution network. This is a review of well known 
meta-heuristic approaches, used to solve the problem of optimal renewable distributed generation allocation 
planning (ORDGAP). In this context, some research gaps were mentioned, and recommendations were 
proposed to expand the scope of research in this field. 

1 Introduction 
Due to climate change, resulting from the increase in 
global warming and greenhouse gas emissions, in 
addition to the enormous increase in the fuel price, it 
becomes imperative to replace fossil fuels energy 
sources with renewable and sustainable ones. As a result, 
many countries, particularly developed ones, are moving 
towards electricity production from renewable sources, 
and are limiting the production of fossil fuel based 
thermal power plants. As shown in  
Fig. 1, electricity generation from renewable sources in 
the United States is beginning to approximate that from 
coal [1]. 

This is certainly the result of the recent interest in 
renewable distributed generation (RDG) as a sustainable 
solution for the development of the future electricity 
system, and the supply of remote areas. The high 
penetration of RDG into the transmission and 
distribution electricity grid (T&D) has two main 
advantages. On the one hand, it contributes significantly 
to reducing the consumption of dirty energy (essentially 
energy coming from the combustion of fossil fuels), and 
on the other hand, it considerably increases the security 
of the power supply for the end customer.  

According to [2], RDGs can be defined as "a small-
scale generation units harnessing renewable energy 
resources (such as sun, wind, water, biomass and 
geothermal energy), at or near the point of use, where the 
users are the producers—whether individuals, small 
businesses and/or a local community. If the small-scale 
generation plants are also connected with each other (to  

share the energy surplus), they become a Renewable 
Local Energy Network, which may in turn be connected 
with nearby similar networks". 

 

Fig. 1. Electric power supply sector net generation from United 
States [1]. 

According to [3,4], the high penetration level of 
RDG units into the T&D electricity grid, has several 
technical, economic and environmental drawbacks [5]. 
Many studies have shown that this issue can only be 
solved by a well conducted optimization study. 
Nevertheless, the success of any optimization study 
depends on several criteria, including the type of the 
optimization problem, the choice of the appropriate 
method, and the perfect understanding of the algorithm's 
operating mechanism, as well as its implementation [6].  

From an optimization standpoint, the ORDGAP is 
generally classified as a non-linear, highly constrained, 
multi-objective, mixed-integer, multimodal optimization 
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problem, where it is very difficult to find a quasi global 
solution [7]. 

According to [8], this problem consists in 
determining a set of DG decision variables, such as size, 
bus location or site, power factor (PF), number and type, 
to minimize or maximize a set of objective functions, 
e.g. power losses minimization and voltage profile 
improvement. According to [9], the ORDGAP is the 
search for the appropriate size, placement and the well-
coordinated control of an optimal number of DGs in the 
distribution system.  

From a technical and economic perspective, effective 
integration of the RDG system is impossible without 
adequate resource allocation and system capacity 
planning. In this context, the availability of renewable 
resources on site, dynamic variation and growth in load 
demand, as well as the cost factors, technical efficiency 
and carbon balance of the various power generation 
technologies must be seriously considered.  

In order to minimise the overall cost of RDG unit’s 
integration, while improving the characteristics of the 
distribution network, an effective approach for planning 
optimization is essential for research developments, 
decision-makers and Distribution Network Operators 
(DNOs). Accordingly, the most recent studies [10,11],  
show that these methods can be classified into five 
categories: mathematical approaches, heuristic methods, 
meta-heuristics, analytical methods and hybrid 
approaches.  

Due to its proven performance and efficiency in 
finding a good quality of the optimal or near-optimal 
solution, as well as its ability to analyse large-scale 
electrical distribution systems and the richness of their 
knowledge base, meta-heuristic methods are the most 
widely used and recommended by most researchers. In 
addition, this type of method has proven its ability to 
solve constrained multi-objective optimisation problems 
(MOOP), as is the case with the RDG allocation 
planning [12,13].  

According to the authors' knowledge, there is no 
recent research paper in the literature that provides a 
comprehensive review of this type of study. So this 
article aims to examine these types of methods as they 
are applied to the planning of RDGs, and is organised as 
follows: Section 2 summarises the most popular articles 
that review recent trends and published work on the 
application of different optimisation techniques to solve 
the problem of the optimal location and size of RGD 
units in the distribution network.  The third section aims 
to present the most needed RGD planning tools: types, 
configurations, common formulation, objectives and 
constraints. The fourth section provides an overview of 
recent peer-reviewed papers that address the ORDGAP 
problem, using the meta-heuristic approach. 

2 Literature Review 
In the recent literature, various meta-heuristic methods 
have been successfully used to solve the ORDGAP 
problem. Using the Scopus database, Fig.2 presents a 
histogram of published papers on this topic over the last 

decade and regressed to 2022. In all, there are 110 
journal papers, 23 of which are full literature reviews. As 
can be seen, the number of articles published increased 
significantly in 2019, indicating an improving trend. For 
this reason, reviewing that type of method when applied 
to the ORDGAP problem has become the natural 
motivation of this review paper. 

The choice of the suitable optimization method is 
often linked to researchers' knowledge of the different 
optimization methods available in the literature, as well 
as those used to optimize the planning and the 
integration of RDG units into the T&D grid. But since 
these optimization methods are in full development, this 
choice can efficiently be done through the most recent, 
specialized, exhaustive and relevant reviews in the field 
of DG’s optimization. 

 
Fig.2. Number of papers using meta-heuristics for solving the 
ORDGAP problem during the last 10 years. 

In the recent five years, many reviews paper are 
published for examining the ORDGAP tools. In [14], the 
authors propose a literature review that brings together 
the various existing optimization methods applied to the 
planning and integration of distributed generation from 
renewable energy sources. The focus is on solving the 
problem of the location and sizing of distributed 
generation units (DGUs), given the enormous annual 
growth in the number of articles published in this field. 
The authors in  [9], present a well-detailed summary of 
the studies carried out on improving the performance 
indices of the distribution network, by integrating the 
same type of DG units. For that purpose, they reviewed 
the different load models of electricity distribution 
networks based on the total minimum losses in active 
power, and the total minimum consumption of MVAs in 
relation to the main substations.  

Besides, the authors in [15] propose a literature 
review of the uncertainty modelling methods used to 
model the uncertain parameters associated with RDGs, 
as well as the methods used for the optimal planning and 
integration of DGs into the distribution network. 
Reference [16] is an exhaustive literature review of 
optimization methods and the most significant and 
widely used objective functions and constraints in 
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literature related to the ORDGAP. In this review paper, 
the optimal allocation of DGs has been examined and 
presented with a particular focus on mathematical 
models and widely used techniques. A brief analysis of 
the related studies was also conducted with respect to the 
objectives and constraints adopted. The authors in [6] 
give a critical review of the numerical and mathematical 
optimization techniques adopted in literature. The 
comparative study and judgment made on the efficiency 
of each method is based on   the methodology of input 
data collection and generation, the design of the system 
configuration, the model formulation and the techniques 
chosen for system optimization.  

As a common result, several approaches are being 
proposed to carry out the (ORDGAP) problem. Some of 
these approaches are based on classical or conventional 
methods, like non linear programming NLP, and mixed 
integer non linear programming MINLP, which are more 
suited for solving special cases in power system 
applications. However, they are not adapted for well 
addressing a combinatorial optimization problem, such 
as the ORDGAP problem, where the majority of 
parameters are under uncertainties.  

3 RDG Planning Tools 

3.1 RDG’s types and possible system 
configurations 

3.1.1 RDG’s types: 

The type of the RDG is one of the most important 
decision variables of the ORDGAP. However, since the 
units of the RDG belong to the DG family, it is first 
necessary to review the usual classifications of the latter.  

In order to classify DGs, several criteria can be taken 
into account. DGs can be classified according to their 
power range (micro, small, medium and large) [17]. It 
can be, also classified by the technology adopted in two 
categories: traditional generator e.g. low speed turbines, 
diesel engines, micro-turbines etc, and non-traditional 
generator e.g. electrochemical devices, storage devices 
and renewable devices which is usually called RDG 
[18,19]. Generally, For the optimal distributed 
generation planning resolution problems based on: losses 
reduction, power factor, and loadability enhancement, 
the most suitable classification of DGs was introduced 
by Hung et al., and adopted by many authors [15,20–22]. 
This classification proposes four major DG types based 
on their electrical ratings in terms of power factor, as 
follows: 
-Type 1: DG capable of injecting P only, e.g. PV panels, 
micro turbines, fuel cells, usually integrated to the main 
grid.  
-Type 2: DG capable of injecting Q only, e.g. 
synchronous compensators based gas turbine. 
-Type 3: DG capable of injecting both P and Q, e.g. 
synchronous machine (cogeneration, gas turbine, etc.). 
-Type 4: DG capable of injecting P but consuming Q, 
e.g. induction generators based wind farms. 

 Accordingly, RDG units can only be a Type 1 or 
Type 4. From a technological standpoint, the RDG 
belongs to the class of non-traditional DGs and it 
includes: photovoltaic, geothermal, wind turbine, small 
hydro or any other renewable energy solution. It can be 
incorporated with battery energy storage systems 
(BESS), shunt capacitors, synchronous condensers, as 
well as Distributed Static Compensator (DSTATCOM) 
[23–26]. 

3.1.2 RDG’s system configurations:  

Depending on the type of links between the source, the 
storage system and the electrical load being supplied, the 
RDG takes several configurations. This link can be DC 
only, AC only or mixed AC/DC. The chosen 
configuration identifies the number, size and type of 
converters, number of unidirectional and bidirectional 
links, and the type of storage systems to be installed [6].  

Given the importance of being connected with other 
DGs, the final configuration must take into account the 
bi-directionality of the power. The figure shows the three 
possible configurations of a DG, assuming that it can be 
an intelligent microgrid that offers the possibility of 
being connected with other neighbouring microgrids. 

In future power grid, smartness is one of the most 
recommended criteria. This shows how important the 
interconnection of the DGs installed in the grid is. For 
this reason, the final configuration of the selected DG 
must take into account the bi-directionality of the energy 
flow. These configurations, as shown in Fig. 3Error! 
Reference source not found., assume that DG unit can 
be a smart microgrid that offers the possibility to be 
connected to other neighbouring microgrids. Thus, to 
have this possibility it would be more convenient to 
consider that the AC loads or the AC generators can also 
be neighbouring micro-grids. 

3.2 Common mathematical RDGP’s problem 
formulation 

As in many previous studies, the problem of ORDGAP 
was often addressed in a multi-objective approach. 
Mathematically, multi-objective optimisation (MOO) 
can be defined as an optimisation problem that deals 
with "a vector of decision variables" meeting constraints 
and optimising a vector function where each element is 
an objective function. In engineering, most optimisation 
problems contain conflicting objective functions, e.g. 
technical functions with financial functions.  

Coello define a quite relevant formulation of MOO's 
problems, assuming e inequality constraints and d 
equality constraints, such as [12,27]:  

Min  fk̅(x̅n, 𝑦̅𝑦m)=[o1(x̅n, 𝑦̅𝑦m),o2(x̅n, 𝑦̅𝑦m),…,ok(x̅n, 𝑦̅𝑦m)]T   (1) 
 
Subject to 
 
 gi(x̅n, 𝑦̅𝑦m) = 0 ,    i=1,2,…,d                                       (2) 
 hi(x̅n, 𝑦̅𝑦m) ≤ 0 ,    i=1,2,…,e 
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Where x̅n = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛]T is a vector of n 
independent decision variables or control variables, and 
y̅m = [𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑚𝑚]T is a vector of m dependant decision 
variables or state variables. The constraints determine de 
“feasible region” F and any point x̅n∈ F gives a “feasible 
solution” where gi(x̅n, 𝑦̅𝑦m) and  hi(x̅n, 𝑦̅𝑦m) are the 
constraints imposed on decision variables. The vector 
function fk̅(x̅n, 𝑦̅𝑦m) in (1) is a set of k objective functions 
oi(x̅n, 𝑦̅𝑦m) for i=1,...,k representing k non-commensurable 
criteria. 

For more clarity on the decision variables, taking the 
example of the optimal power flow (OPF) [11,28]. 
Control variables control the power flow, while the state 
variables describe the power system state, such as: 
x̅n = [𝑃𝑃2 … 𝑃𝑃𝑁𝑁𝑁𝑁, 𝑉𝑉1 … 𝑉𝑉𝑁𝑁𝐺𝐺, 𝑇𝑇𝑆𝑆1 … 𝑇𝑇𝑆𝑆𝑁𝑁𝑁𝑁, 𝑄𝑄1 … 𝑄𝑄𝑁𝑁𝑁𝑁 ]T         (3)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. General DG’s configurations of (a) DC-Bus (b) Mixed 
AC/DC-Bus and (c) AC-Bus.  

where PNG is the generated power at all generation buses 
except the slack bus, VNG is the voltage at generation 
buses, TSNT is the transformers tap-setting, and QNC is the 
shunt VAR compensators. NG, NT, and NC are the total 
number of generators, transformers and shunt VAR 
compensations, respectively. 

𝑦̅𝑦n = [𝑃𝑃1, 𝑉𝑉𝐿𝐿1 … 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿, 𝑄𝑄1 … 𝑄𝑄𝑁𝑁𝑁𝑁, 𝑆𝑆𝑙𝑙1 … 𝑆𝑆𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁]T        (4) 
 
where NG, NT, and NC are the total number of 
generators, transformers and shunt VAR compensations, 
respectively.QNC P1 is the generated power at the slack 
bus, VL is the voltage at load buses, QNG is the reactive 
power of all generation units, and Sl is the loading of 
transmission lines. NTL and NL are the transmission line 
numbers and load bus numbers, respectively. 

In the case of RDGA, the control variables can be the 
location (or siting), and the generated power (or sizing) 
of each RDG unit. While the state variables can be the 
voltage magnitude and the nodal phase angle of each bus 
of the system [29].  

3.2 Most common objective-functions 

According to [16] the most common objective functions 
used in RDGA problem, can be classified into three 
categories; technical objectives, financial objectives or 
environmental objectives. 
 
Table 1.The objective functions used for the problem of 
optimal DG planning. 
 

 
Out of all the objective functions summarized in 

Table 1, the most common are; minimization of active 
power losses, reactive power losses, electric energy 
losses, improvement of voltage profile, and 
maximization of cost savings [8].  

The number of these functions varies from year to 
year. The choice among these objectives, as well as their 
preponderance, is one of the most decisive criteria for 
the success of any RDG’s allocation optimization study. 

 

Functions to be minimized Functions to be maximized 
- Power and energy losses. 
- Cost of energy.  
- Benefit/cost ratio. 
- Cost of operation.  
- Energy not supplied. 
- The level of the short circuit. 
- Cost of interruption. 
- Interruption penalties. 
- Transformer maintenance. 
- Cost of switching. 
- Electricity production  
- THD. 
- Investment cost 
- Voltage variations, including 

voltage drops. 
- Voltage stability index. 
- Cost of purchased energy. 
- Cost of maintenance. 
- Cost of total power losses. 
- Voltage stability margin. 

- Profit 
- Voltage deviation. 
- Reliability 
- Power provided by DG. 
- DG Capacity. 
- Margin of voltage stability. 
- Net present value of wind 

turbine investments from a 
planning perspective. 

- Power quality. 
- Balancing current in the 

different sections of the 
system. 

- Load balancing. 
- Net annual savings. 
- Voltage profile. 
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3.3 Most common constraints 

 Usually, the RDGA optimization problem is 
considered as a constrained non-linear, and a complex 
combinatorial analysis. In general, the set of constraints 
can be divided into two categories; equality constraints 
and inequality constraints. But in the case of RDGA 

problem, these constraints can either be related to the 
conservation of the electricity grid, or to the capacity 
limitations of the utilities. 

On this basis, Table 2 summarizes the most 
commonly constraints in the literature, used to address 
the RDGA optimization problem. 

Table 2. The most common RDGA constraints. 
 

Power system conservation constraints Equal Inequal Utilities capacity limitations constraints Equal Inequal 
- Power balance 
- Node voltage 
- Line current 
- Power factor limitation of RDG units. 
- Number o switchable lines 
- Thermal limit 
- DG penetration limits. 
- Active and reactive load balance. 
- power transformer thermal rating 

x 
 

 
x 
x 
x 
x 
x 
x 
x 
x 

- Short circuit current. 
- Capacity of intertie power 
- Number of RDGs. 
- Power generation limit. 
- DG capacity limit 
- Total harmonic distortion (THD) limits 

 
x 
 
 
 

x 
 

x 
x 
x 
x 

 
4 Meta-heuristics applied to ORDGAP 
problem 
Usually, ORDGAP is a complex combinatorial analysis. 
In fact, for such type of problems, heuristic methods 
have been established since 1940s. Heuristics combines 
trial and error solutions for complex problems within 
real time limits. But, as the complexity of the problem 
increases, especially with the occurrence of uncertain 
parameters, more complicated optimization approaches 
are required. For this reason, meta-heurstic methods 
have been developed since the 1980s.  These approaches 
simulate the natural and social behaviors of some 
organisms, and the modalities of their development and 
adaptation to their environment [14].  

Meta-heuristic approaches are often established 
through the mathematical formulation of living beings 
behaviors, physical phenomena, social behaviors and 
biological laws. Usually, in-depth observation and 
accurate understanding of these phenomena, often results 
in very advanced algorithms that are suitable for solving 
many complex and combinatorial engineering problems. 
The most popular and widely used of these algorithms 
are Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO). GA simulates the genetic evolution 
of living organisms, and includes five steps; initial 
population, fitness function, selection, crossover and 
mutation. PSO algorithm, simulates the propagation of 
swarms of migratory birds, and depends on random 
propagation. 

From the literature, these meta-heuristic methods are 
fundamentally classified into two categories: trajectory-
based (single-based) and population-based methods. The 
major difference between these two classes is the 
number of provisional solutions used at each step, or 
iterative, of the algorithm. On one hand, a trajectory-
based method, e.g. Hill Climbing (HC), Tabu Search 
(TS), Simulated Annealing (SA) and Explorative Local 
Search (ELS) methods, starts with a single initial 
solution. At each level of the search, the currently 
available solution is replaced by another (often the best) 
solution found in its proximity. Thus, it is not surprising 

that meta-heuristic methods based on trajectories quickly 
find an optimal local solution. In the other hand, 
population-based algorithms use a set of solutions (i.e. a 
population of solutions). The initial population is 
produced randomly and then refined iteratively until the 
best one. At each iteration, some individuals in the 
population are replaced by newly generated ones, 
resulting in a new generation, which are often those 
whose characteristics are best suited to solving the 
problem. These approaches are called exploration-based 
methods because their main capacity lies in 
diversification in the research space [13,30]. 
Population-based methods are more suitable for 
combinatorial optimization problems. These methods 
include evolutionary algorithms, swarm intelligence and 
physics-based algorithms, which have received 
considerable attention in recent years, mainly due to 
rapid advances in computer technology and the 
development of user-friendly and open source software 
[13]. A simplified classification of different meta-
heuristic methods is depicted in Fig. 4. 

Many scientific contributions are being developed for 
a better ORDGAP, and others have been successfully 
accomplished. The vast majority of these studies have 
addressed the issue of ORDGAP, by improving or using 
one of the meta-heuristic approaches proposed in the 
literature. Table 3 summarises the recent and the most 
relevant of these scientific contributions, with their 
results. 

 
Fig. 4. Classification of metaheuristic methods. 

Metaheuristic methods

Trajectory-based

HC
TS
SA

ELS

Population- based

Evolutionary-
based

GA
ES

Swarm-based

PSO
CSA

TLBO
SCO

Physics-based

GSA

LAPO
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Table 3. Summary of recent peer reviewed articles dealing with the ORDGAP problem 

Ref Proposed 
algorithm 

Compared to Objective functions DG type / number / 
configuration 

Network results Decision 
variables 

Uncertainties 

[29] Hybrid GOA and 
CSA 

PSO, GA, CS, 
GOA, LSA, 
SSA 

-Power loss 
-Voltage profile 
-Voltage stability 

Variable and constant 
power load, 
PF1 = 1 
PF2 = 0,9 (lagging) 

33 bus – 69 
bus 

Proposed > SSA 
> LSA 

 Site 
 Size 
 Number 

- 

[31] CTLBO 
(Comprehensive 
TLBO) 

TLBO, 
QOTLBO 
(Quasi-
Oppositional 
TLBO) 

-Loss reduction 
-Voltage profile 
-Annual energy 
savings  

 3DGs 
 PF = 1 
-Variable loads for 
annual energy 
savings. 
- Constant power 
load. 
 

33 bus – 69 
bus – 118 bus 

Proposed   > 
QOTLBO 
>TLBO 

 Site  
 Size 

- 

[32] QOCSOS (quasi-
oppositional 
chaotic symbiotic 
organisms search) 

SOS, KHA, 
QOTLBO, 
QOSIMBO-Q, 
SFSA, AM-
PSO, EA-OPF 

-Real power loss 
-Voltage profile 
-Voltage stability 

 3 DGs 
PF =1-0,95 lagging 
and optimal. 

33 bus–69 bus 
– 118bus 

QOCSOS > 
SOS > 
SFSA > 
QOTLBO 

 Site 
 Size 

- 

[33] Comparative study  PSO , GWO, 
BSA, WOA 

-Power loss  P-type (PF = 1), Q-
type (PF = 0) and 
PQ-type  

 33 bus GWO > 
PSO > BSA 
> WOA 

 Site 
 Size  
 Open switches 

- 

[25] ALO (Ant Lion 
Optimizer) 

 Comparison 
between 
different DG 
configuration 

-Voltage stability 
-Active power loss 
-Reactive power loss 

 µT , wind, PV 
with synchronous 
condensers 

 118 bus ---  Sit 
 Size 

- 

[34] EGA 
(Elitism Genetic 
Algorithm) 

 PSO, GA -Electricity 
production 
-Investment cost  

 Wind,  PV and EESS 
(distributed 
microgrid) 

 ------ EGA > PSO 
> GA 

 Site 
 Size 

- 

[35] Comparative study  TS, SS 
(scatter 
search), ACO. 

- Active power loss 
  

3 DGs with variable 
PF 

 IEEE 13 bus SS > TS > 
AC 

 Site  
 Size 

- 

[36] ALO  PSO, GA -Purchased energy 
Cost 
-Reliability 
-DG’s application 
cost 
-Distribution system 
loss 
-Voltage deviation 

 2 different type o 
DG for each network. 

33 bus –69 bus ALO > PSO 
> GA 

 Site 
 Size 

- 

[37] CSA (cuckoo 
search algorithm) 

 PSO, GA -Power loss 
-Voltage deviations 
-Voltage variations 

 4 P-type DGs from 
10 to 40 MW with a 
constant power 
generation. 

 38 bus-69 bus CSA > GA 
> PSO 

 Site - 

[38]  GWO  GA -Active power loss 
-Voltage profile 

 Test with 1,2,3 and 4 
DGs 

 33 bus-69 bus GWO > GA  Site 
 Size 

- 

[39] PSO Not a 
comparative 
study 

-THD 
-Total power loss 
-Total cost of DG 
-Green house gas 
emissions 
-Voltage profile 
 

-Wind, PV, Fuel 
Cell. 
-Variant PF. 
-Linear and non 
linear load. 

 31 bus Optimal size 
and location 
give best 
results. 

 Site 
 Size 

-Load growth 
 -Profile of 
solar 
irradiation. 
 -Wind speed 
 -Load demand 
variations. 

[24] HHSA (Hybrid 
HAS + PABCA) 

 HAS  Power loss 
 Voltage profile 

DG + Shunt 
capacitors, 
1, 2 and 3 DGs 

33bus–119 bus HHSA > HAS  Site 
 Size 

- 

[40] DEA  CF – PSO , 
HCF, IA, 
CPLS 

 -Distribution system 
loss 
-Total voltage 
deviation. 
-Voltage stability 
index  

-Constant and 
variable loads and 
generation. 
-1,2 and 3 DGs. 
-Real time DG 
operation with 
optimal PF.  

   - DEA >CF-PSO 
> IA > CPLS 

 Site  
 Size 
 PF 

- 

[26] LSA  BFOA, 
QOTLBO, 
PSO, BSOA 

 -Power loss 
 -Total voltage 
deviation 
 -Voltage stability 
index. 

DG + DSTATCOM 
Variable load 

33 bus-69 bus LSA gives best 
results 

 Site 
 Size 

- 
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Table 3. (Continued)

 
From Table 3, the most technical objective functions 

used are: voltage profile improvement and losses 
reduction, with a very relevant consideration of the 
reliability enhancement [36,56]. For the economic 
consideration, most authors prefer cost of benefit 
maximisation or profit maximisation, taking into account 
inflation and interest rates [57]. Furthermore, to assess 
the environmental benefit of integrating the RDG into 

the distribution network, researchers recommend the 
reduction of greenhouse gas (GHG) emissions  [58]. 

All these objectives are generally subject to the 
constraint of power balance, voltage and temperature 
limits. However, many approaches have been developed 
to address these constraints. The penalty-based system is 
the most widely adopted mechanism for effectively 

Ref Proposed 
algorithm 

Compared to Objective functions DG type / number / 
configuration 

Network results Decision 
variables 

Uncertainties 

[41] MICA 
(Modified 
ICA) 

 CSA  -Active power loss 
 -Voltage stability  

PQ-type with load 
variation.  

34 bus-69bus MICA > CSA  Site 
 Size 

- 

[42] RTO (Rooted 
Tree 
Optimization) 

 PSO, DE  -Index of voltage 
profile. 
 -Index of loss 
reduction. 
 -Index of pollution 
reduction.  

-DG+DSTATCOM 
-PV DG 
-Variable load 

33 bus RTO > PSO > 
DE 

 Site - 

[43] Hybrid 
ALOA+LSF 

ALOA, 
BSOA, 
EVPSO, 
PSOPC, 
ADPSO, 
DAPSO. 

 -Active power losses 
 -Voltage profile 
 -Voltage stability 
index 

-Wind + PV 
-1 DG and 2 DG. 
-Load variation 

34 bus-69bus ALOA > 
ADPSO 
>DAPSO > 
BSOA > 
analytical > 
PSOPC > 
EVPSO 

 Site 
 Size 

- 

[44] Hybrid 
PSO+analytical 
approach 

Analytical 
approach, 
PSO 

 - Active power loss. 
  

PDG, QDG, PQDG 
(lagging), PQDG 
(leading). 

 41 bus Proposed > 
PSO > 
Analytical 

 Site 
 Size 

- 

[45] PSO (with 
AHP for 
defining 
weight factors 
of objective 
functions) 

Comparison 
is made in 
terms of 
application 
of AHP for 
deciding 
weight 
factors 

-Power loss 
-Voltage deviation. 
-Environment impact 
reduction index. 
-Economic index. 

Wind, PV, 
Biomass. 
PF = 1 and  0,95 
(lagging) 

 51 bus 
 11 kV 

With AHP 
deciding weight 
factors, results 
are the best. 

 Site 
 Size 

Intermittency 
modeling of 

Wind and PV 
generated 

power.  

[46] MOMSOS 
(Multi-
Objective 
Modified 
Symbiotic 
Organism 
Search) 

MOSOS, 
NSGAII, 
MOPSO. 

- Annual energy loss. 
- Annual investment 
and operating cost. 
- Annual electricity 
purchase cost. 
- Total Voltage 
deviation.  

Wind, PV and 
Biomass. 
 

 69 bus MOMSOS > 
NSGAII > 
MOSOS > 
MOPSO  

 Site 
 Size 

- 

[11] Hybrid 
CSA+PSO 
(Crow search 
algorithm + 
PSO) 

 TLBO, 
PSO, 
PSOGSA( 
Phasor 
PSO+GSA). 

 - Total cost 
 - Transmission 
Power loss. 

Wind, PV 
1, 2 and 3 DGs 

 30 bus CSA-PSO > 
PPSOGSA > 
TLBO > PSO 

 Site 
 Size  
 

- 

[28] PPSOGSA  PPSO, 
GSA, MFO, 
GA , DE, 
TLBO, 
MSA,CS, 
BSA, 
SRSR, ICA, 
FFA and 
others 

 - Active power loss. 
- Load bus voltage 
deviation. 
-Total cost of fuel. 

Wind, PV  30 bus PPSOGSA > 
WDO > others 

 -PF 
 -Voltage 
magnitude 

- Wind speed. 
-Solar 
irradiation. 

[47]  Fuzzy based 
extended 
NSGA II (E-
NSGA II) 

SPEA, 
MOGA, 
MOPSO, 
NSGA II, 
MOEA/D. 

-Voltage profile. 
-Benefit cost 
maximization. 
-Environmental 
benefit. 

PV, Battery storage 
system (BSS), 
DSTATCOM. 

69 bus E-NSGA II > 
MOEA/D > 
NSGA II > 
MOPSO > 
SPEA > 
MOGA 

 Site 
 Size 
 Number 
 

- PV power 
generation. 
  

[48] APSO 
(Adaptive 
PSO) 
MSGA 
(Modified 
GSA) 
 

AEO 
(Artificial 
Ecosystem-
based 
Optimization) 

-Power losses. 
-Voltage stability. 
-Voltage deviation. 

Single and multiple 
DGs, with unity and 
optimal PF. 

69 bus–85 bus. MGSA > 
APSO > AEO> 

 Site  
 Size 
 PF 

- 
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handling constraints in the corresponding adaptation 
function [46]. 

From Table 3, it can easily be concluded that the 
most opportune path is the hybrid approach [43,49]. 
Most authors have proven the effectiveness of this 
choice. The most important task is to raise the drawbacks 
of each method and try to overcome it with another 
method that does not have the same drawbacks. Table 4 
provides the authors with the common drawbacks and 
advantages of all meta-heuristic methods. 

 
Table 4. Meta-heuristic’s Prons and Cons [8,53–55]. 

Advantages Drawbacks 
-Efficient performance 
-Need for fewer iteration 
-Capability to analyse 
large-scale systems. 
-The presence of a very rich 
knowledge base. 
-Effortlessly parallelizable, 
i.e. more suited for parallel 
computation. 
-Good concerning the 
exploration and the 
exploration of the search 
space and the identification 
of areas with high quality 
solutions. 

-High complexity. 
-Premature convergence. 
-Instability. 
-Tuning parameters. 
-Slightly difficult coding. 

Referring to the No Free Lunch (NFL) theorem, there 
is no perfect method to solve all optimization problems 
[50]. Thus, the quality of the solution and the 
computational complexity remains a very difficult trade-
off, which cannot easily be compromised. From the 
Table 4 the most critical drawback of meta-heuristic 
methods is parameter tuning. So the most recommended 
method, is the parameter-free one [51,52]. 

5 Conclusions 
Meta-heuristic approaches are increasingly attracting 
researchers. Certainly the ORDGAP problem will 
become one of the most important axes in the field of 
renewable energy. This article proves this fact through a 
brief review of recent research work in this field.  That 
said, the use of meta-heuristic methods will build a 
global vision on the future electricity grid.  

On the basis of this literature review, the most 
important recommendations for this scope of research 
can be listed as follows: 

 The power generation based renewable sources, 
type of load and fluctuations in the electricity 
market, in addition to several other uncertain 
parameters, are principal causes of 
intermittencies. Thus, integrating uncertainties 
for modelling several parameters is strongly 
recommended for well-addressing the ORDGAP 
problem. 

 Hybridization is also the most recommended 
path that can be used, to overcome drawbacks of 
meta-heuristic methods.  

 The operation of the DG in autonomous manner 
could also lead to an extension of future research 
coverage. 

 The introduction of new free-parameter 
algorithms, can also enhance the relevance of the 
obtained results, and reduce the complexity 
issue. 

 The criteria for comparing the different 
algorithms are not discussed in this article. It is 
therefore strongly recommended to review the 
testing and comparison methods adopted in the 
literature. 

 For the sake of brevity, this article does not 
introduce the adopted mathematical formulations 
of all objective functions and constraints. The 
choice of these formulations is a rather 
preponderant step to successfully solve the 
ORDGAP problem. Thus, exhaustive review of 
these formulas could be quite beneficial for all 
researchers and decision-makers. 

 The research work can be complemented by the 
distribution system planning considering the 
intermittent nature of renewable sources. This 
includes stochastic studies, probabilistic and 
possibilistic models for the power produced by 
this kind of sources, as well as uncertainties 
related to load growth. 
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