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Abstract. The work is devoted to cellular-automaton modeling based on a 

class of cellular automata with Margolus neighborhood. Modeling of the 

gas sorption process by coal particle was carried out. To organize this kind 

of evolutionary process, the method of cellular automata modeling was 

supplemented by the Monte Carlo method to implement the boundary 

conditions at the solid – gas interface. 

1 Introduction 

When studying dispersed systems, it is necessary to take into account their internal 

properties. The main internal properties are: medium morphology, nature of gas interaction 

with the pore walls and the medium, which can be porous materials. Their consideration of 

as continuous media characterized by a certain coefficient of porosity does not satisfy the 

real picture of the materials under study, including gas-coal solution. 

The problem is the use of mathematical models based on differential equations in partial 

derivatives to represent the material morphology at the microlevel and simulate the gas 

passage through the pores and thickness of the material [1], since the description by 

continuous functions of the pore boundaries is difficult, for example, when solving a 

parabolic equation describing diffusion in the area with a complex boundary. 

The computing power of modern supercomputers makes it possible to solve this 

problem, for example, cellular automata are widely used to simulate diffusion processes, 

with the help of which some problems of gas dynamics have already been solved [2]. 

The objective of the research is the formation and application of cellular automata for 

modeling the movement of gas in materials with a complex boundary (porous medium). 

Therefore, this article proposes a cellular automaton, the configuration of which imitates 

two types of movements of abstract particles in a porous medium: diffusion (spreading) and 

interaction with walls (equilibrium sorption). 

2 Object of the study 

The unloaded deep coal seam with an adjacent working is a gas-bearing porous system 

(dispersed system) with closed pores. This system consists of a solid medium (gas-coal 
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solution) and a free gas phase in the pores. The coal substance of such a seam accumulates 

methane in various forms: gas in a free state inside the continuity defects (pores) – 2-12%; 

gas adsorbed on the surfaces of continuity defects – 8-16%; gas distributed in the 

intermolecular space (gas-coal solution) – 70-80%; chemically sorbed gas 1-2%; gas in 

clathrate-like structures – 1-3% [3]. The object of the study is the final volume of coal, in 

which the diffusion processes in a solid and equilibrium sorption take place at the solid-free 

gas interface, and is characterized by a uniform micropores distribution. 

3 Cellular automaton modeling 

The cellular automaton (CA) can be thought of as a stylized world in which space is 

represented by a uniform mesh, and each cell is encoded by a finite number of bits, time is 

discrete [4]. The laws of the transition of cell states determine the state of each cell at the 

current step by its state and the state of its neighbors at the previous step in time. 

Neighboring cells form its neighborhood [5]. That is, the rules of evolution (CA) are 

formulated in terms of local interaction using the von Neumann or Moore neighborhood. 

Let us define another class of CA – CA with Margolus neighborhood [5]: 

1) the array of cells is divided into many finite parts - blocks; 

2) a rule for a block is set, the rule is applied to all blocks, blocks do not intersect; 

3) the division into blocks changes from step to step so as to ensure the intersection of 

blocks at adjacent steps. 

Using the partitioning scheme: we divide the array of cells into 2x2 blocks – at even and 

odd time steps, two different divisions into blocks are made. In Fig. 1 the even lattice is 

shifted relative to the odd one by one cell vertically and horizontally. CA with Margolus 

neighborhood can be transformed into an ordinary CA. 

 

Fig. 1. Blocks 2x2 of Margolus neighborhood; even (bold lines) and odd lattices (thin lines) alternate 

in successive steps. Depending on the lattice used, a cell with a black circle will have either an even 

block or an odd block in its neighborhood. 

Let us consider a model of gas sorption kinetics in the finite volume of coal. The 

sorption isotherm is described by the Langmuir equation. Gas transfer within a finite 

volume of coal is carried out by diffusion according to Fick’s law. 

 

Mathematical formulation of the corresponding two-dimensional problem [6]: 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡0) = 𝐶𝐶𝐶𝐶0(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦),    (2) 

𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝜕𝜕𝜕𝜕)
1+𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝜕𝜕𝜕𝜕)

, (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) ∈ 𝐺𝐺𝐺𝐺,   (3) 

where 𝐶𝐶𝐶𝐶 is the concentration of the sorbed gas; 𝐷𝐷𝐷𝐷 is the diffusion coefficient; 𝑃𝑃𝑃𝑃 is the 

gas pressure; 𝐶𝐶𝐶𝐶0  is the initial concentration value; 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏 – coefficients of the Langmuir 

equation; 𝐺𝐺𝐺𝐺 – particle surface. 

We will proceed from the fact that gas diffusion in a porous solid is equivalent to self-

diffusion. Consider the motion of an individual gas molecule. The collision of this molecule 

with other molecules leads to the fact that its motion has a stochastic character. Let us 

replace a real molecule with a lattice gas molecule that moves in jumps of unit length at 

discrete times along the infinite lattice with square cells. At each moment of time, all four 

directions of motion for a particle are equally probable. This model of particle motion is a 

random walk [7]. 

The essence of the lattice model of adsorption is as follows. There is a lattice of a finite 

number of centers, and all centers are the same. Each center can be in two states: the center 

is free; the center is occupied by an adsorbate molecule. The number of adsorbed molecules 

corresponds to the number of occupied centers. If we do not take into account the 

interactions between the occupied centers, then the mathematical description of the model 

results in the Langmuir equation [8]. 

The Langmuir equation in its lattice form determines the number of occupied adsorption 

centers as a function of gas pressure. This equation can be used as a criterion for discrete 

sorption equilibrium when setting boundary conditions of the form (2), (3) for a CA. 

An essential part of the problem (1), (2), (3) set from the very beginning is the 

implementation of boundary conditions (2) and (3), which for cellular automaton can be 

carried out proceeding from the lattice model of adsorption [8], where a complex 

adsorption the surface field is replaced by a discrete one. 

Random walk describes diffusion well [4]. The probability distribution for the random 

walk model is reduced to the distribution for the continual motion of a real molecule. The 

corresponding result was obtained analytically [7, 9, 10]. This was demonstrated for a two-

dimensional CA [10]. Such a two-dimensional random walk is very efficiently 

implemented in the form of a CA with Margolus neighborhood. 

A number of the most famous CA diffusion models are described in [11]. A rigorous 

proof of the correspondence of the CA-representation of diffusion to the Laplace 

differential equation is given in [12] for a CA with Margolus neighborhood. In the same 

place, for the first time, the value of the diffusion coefficient 𝐷𝐷𝐷𝐷 = 𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏/ℎ2 was obtained for 

this CA model, which in the two-dimensional case is 𝐷𝐷𝐷𝐷2𝐷𝐷𝐷𝐷 = 3/2. Further, this model will 

be described and used for the solution. 

Algorithm of the functioning of a cellular automaton for studying the gas release 

kinetics is as follows. On the cell mass, two types of cells are distinguished: solid cells 

(coal particle) and free gas cells. Cells can be in one of two states: filled with a gas 

molecule and empty. The cells of free gas will be considered to be in an indefinite state: 

each of them contains a gas molecule with a certain probability. This probability is common 

for the entire array of free gas cells and is analogous to the free gas pressure (5). 

The renewal of the state of cells in a solid is carried out in accordance with the rule for 

Margolus neighborhood (4). At the solid – gas interface, when dividing into blocks, cells of 

both phases fall into one block. When such a block is rotated, the gas molecule has the 

ability to leave the solid. The indefinite content of the free gas cell turns out to be on the 

solid-gas interface. It is necessary to correlate them in such a way that the relative number 

of border cells in the sorbent zone occupied by molecules is equal to the ratio of the number 

of adsorbed molecules to the total number of lattice centers. Which will fulfill the boundary 
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conditions (2), (3). A gas molecule that leaves the solid is absorbed. The probability of the 

presence of a molecule in the cell that has penetrated into a solid is equal to a uniy. 

A cellular automaton model with Margolus neighborhood of two-dimensional diffusion 

(1) with boundary conditions (2), (3) – CA with a set of names М = {(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗): 𝑖𝑖𝑖𝑖 =
 0,1, . . . , 𝑔𝑔𝑔𝑔;   𝑗𝑗𝑗𝑗 = 0,1, . . . , 𝑙𝑙𝑙𝑙} and with the neighborhood pattern 𝑇𝑇𝑇𝑇{𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)  =  {(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗), (𝑖𝑖𝑖𝑖 +
1, 𝑗𝑗𝑗𝑗), (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 + 1), (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 + 1)}. The function 𝑣𝑣𝑣𝑣(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)  can be considered as a Boolean cellular 

array 𝛺𝛺𝛺𝛺𝐵𝐵𝐵𝐵  =  {(𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚)}, in which the cell is a pair of symbols (𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚), where 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚 is a state 

variable, and 𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀 is the name of the cell from the set of names M, denoted by a pair of 

coordinates (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)  in the case of a 2D-Cartesian space, and in the general case by one 

symbol 𝑚𝑚𝑚𝑚. The range of values of the state variables 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚 ∈ 𝐵𝐵𝐵𝐵, where 𝐵𝐵𝐵𝐵 = {0.1} is the 

alphabet of states. 

The transition rules from state to state are probabilistic for a rigid body without 

boundary conditions (3) having the following form: 

{(𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)), (𝑣𝑣𝑣𝑣1, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 )), (𝑣𝑣𝑣𝑣2, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 + 1)), (𝑣𝑣𝑣𝑣3, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 + 1))}  =   

= �
��𝑣𝑣𝑣𝑣1, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)�, �𝑣𝑣𝑣𝑣2, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 )�, �𝑣𝑣𝑣𝑣3, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 + 1)�, �𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 + 1)��, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 < 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆,
��𝑣𝑣𝑣𝑣3, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)�, �𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 )�, �𝑣𝑣𝑣𝑣1, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 + 1)�, �𝑣𝑣𝑣𝑣2, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 + 1)��, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 ≥ 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆,

 (4) 

where 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 is a random number in the interval (О, 1); 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 ≤  ½  is the probability of 

interaction of the cell (𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗))  with the neighboring cells for a solid body. At 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆  =  1/2, 

the diffusion coefficient is 𝐷𝐷𝐷𝐷 = 3/2. The CA operating mode is synchronous push-pull. At 

the first step, substitution (4) is performed by all cells with names satisfying the condition: 

𝑖𝑖𝑖𝑖 +  𝑗𝑗𝑗𝑗 is an even number. At the second stage, the same substitution is performed by cells 

for which 𝑖𝑖𝑖𝑖 +  𝑗𝑗𝑗𝑗 is an odd number. By changing the value of the probability p, it is possible 

to simulate the diffusion process with a coefficient in a wide range [13], i.e., with 

decreasing 𝑝𝑝𝑝𝑝, the coefficient 𝐷𝐷𝐷𝐷 decreases proportionally. 

The transition rules from state to state are probabilistic for a free gas: 

𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚 = �1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 < 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺,
0, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 ≥ 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺,    (5) 

where 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺 ≤  ½ is the probability of filling the cell with a gas molecule (𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗))  for the 

entire array of free gas. The higher 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺  is, the higher the free gas pressure is. 

4 Computational experiment results 

The computational experiment is constructed as follows. The initial state of the system 

(CA) (2) is set, then the algorithm (4), (5) and the algorithm for the boundary condition (3) 

arising on the solid-gas interface are performed. 

Fig. 2 shows the state of evolution of the process of gas sorption in a finite volume of 

coal containing four micropores with free gas. In the form of an initial state, characterized 

by the accumulation of gas along the left edge of the cell array in the solid and the 

hundredth step of the evolution of a given cellular automaton, characterized by a random, 

uniform distribution (spreading) of gas in the solid, which is the result of diffusion (random 

walk) of gas flowing in the solid (4). Cells in the pores with a certain probability, in our 

case 0.5, common for the entire part of the array occupied by pores, change their state: 

filled, empty (5). Equilibrium sorption occurs at the solid-free gas interface, expressed in 

the preservation of the initial state of the cell at this border. A two-dimensional model of a 

cellular automaton with Margolus neighborhood is used. The size of the cell array is 16x16 
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The transition rules from state to state are probabilistic for a rigid body without 

boundary conditions (3) having the following form: 

{(𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)), (𝑣𝑣𝑣𝑣1, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 )), (𝑣𝑣𝑣𝑣2, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 + 1)), (𝑣𝑣𝑣𝑣3, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 + 1))}  =   

= �
��𝑣𝑣𝑣𝑣1, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)�, �𝑣𝑣𝑣𝑣2, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 )�, �𝑣𝑣𝑣𝑣3, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 + 1)�, �𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 + 1)��, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 < 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆,
��𝑣𝑣𝑣𝑣3, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)�, �𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 )�, �𝑣𝑣𝑣𝑣1, (𝑖𝑖𝑖𝑖 + 1, 𝑗𝑗𝑗𝑗 + 1)�, �𝑣𝑣𝑣𝑣2, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 + 1)��, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 ≥ 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆,

 (4) 

where 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 is a random number in the interval (О, 1); 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 ≤  ½  is the probability of 

interaction of the cell (𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗))  with the neighboring cells for a solid body. At 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆  =  1/2, 

the diffusion coefficient is 𝐷𝐷𝐷𝐷 = 3/2. The CA operating mode is synchronous push-pull. At 

the first step, substitution (4) is performed by all cells with names satisfying the condition: 

𝑖𝑖𝑖𝑖 +  𝑗𝑗𝑗𝑗 is an even number. At the second stage, the same substitution is performed by cells 

for which 𝑖𝑖𝑖𝑖 +  𝑗𝑗𝑗𝑗 is an odd number. By changing the value of the probability p, it is possible 

to simulate the diffusion process with a coefficient in a wide range [13], i.e., with 

decreasing 𝑝𝑝𝑝𝑝, the coefficient 𝐷𝐷𝐷𝐷 decreases proportionally. 

The transition rules from state to state are probabilistic for a free gas: 

𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚 = �1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 < 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺,
0, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏 ≥ 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺,    (5) 

where 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺 ≤  ½ is the probability of filling the cell with a gas molecule (𝑣𝑣𝑣𝑣0, (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗))  for the 

entire array of free gas. The higher 𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺  is, the higher the free gas pressure is. 

4 Computational experiment results 

The computational experiment is constructed as follows. The initial state of the system 

(CA) (2) is set, then the algorithm (4), (5) and the algorithm for the boundary condition (3) 

arising on the solid-gas interface are performed. 

Fig. 2 shows the state of evolution of the process of gas sorption in a finite volume of 

coal containing four micropores with free gas. In the form of an initial state, characterized 

by the accumulation of gas along the left edge of the cell array in the solid and the 

hundredth step of the evolution of a given cellular automaton, characterized by a random, 

uniform distribution (spreading) of gas in the solid, which is the result of diffusion (random 

walk) of gas flowing in the solid (4). Cells in the pores with a certain probability, in our 

case 0.5, common for the entire part of the array occupied by pores, change their state: 

filled, empty (5). Equilibrium sorption occurs at the solid-free gas interface, expressed in 

the preservation of the initial state of the cell at this border. A two-dimensional model of a 

cellular automaton with Margolus neighborhood is used. The size of the cell array is 16x16 

 

cells, which contains four 4x4 areas with free gas. Condition (3) was applied at the solid – 

gas interface. Cells with thick black borders are solid, cells with thin borders are solid – 

gas, cells with pale gray borders are free gas. Gray cells – the presence of a gas molecule 

(filled), white cells – the absence of a gas molecule (empty). 

 

 
Fig. 2. Evolution states of the gas sorption process in the finite volume of coal: initial state; hundredth 

step 

4 Conclusion 

The corresponding algorithm is applicable for studying other physical processes, heat and 

electrical conductivity, magnetic and electromagnetic flows, etc. In such computer 

experiments, self-organization of matter is observed, and this self-organization follows 

from local interactions, the rule of which is set, and the structure arises itself. 

Thus, the results of the performed numerical experiments have shown that cellular 

automata have a number of possibilities from the point of view of qualitative modeling of 

gas-dynamic processes. The developed methodology for computer modeling of the finite 

volume of coal provides for the use of a cellular automaton as a research tool. It consists in 

creating an algorithm and its computer implementation for studying the CA evolution, 

revealing the properties of the final volume of coal and their analysis. 

The proposed cellular automaton is designed conceptually to simulate active media. It 

differs from the known cellular automata in that a cell has the same number of states for all, 

fixed for a specific evolution, the definition of which at each step is solved by the boundary 

diffusion problem, and a set of rules determines the state of each cell at the current step by 

the state of its and its neighbors at the previous step in time. 
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