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Abstract. Considering the increasing penetration of variable and non-dispatchable renewable energy in 

worldwide electricity mixes, an increasing requirement for energy storage capacity is foreseen in order to 

decouple production and demand. Electrochemical battery systems and/or hydrogen systems (electrolysers 

and fuel cells) provide a suitable alternative to be implemented in local small-to-medium scale microgrid 

environments. The research aims to address the optimal sizing of an Energy Storage System composed of 

lead acid batteries and a hydrogen loop (electrolyser, compressed storage tank and fuel cell) within an actual 

hybrid renewable microgrid located in Huelva, Spain. The energy storage systems must couple the variable 

production of 15 kWp of solar PV systems and a 3 kWnom horizontal axis wind turbine to a real monitored 

residential load, which present a time-shifted power demand. By making use of previously developed and 

validated component models, three storage configurations (battery-only, hydrogen-only and hybrid battery-

hydrogen) are assessed via parametrical variation in yearly simulations in hourly timestep, analysing the 

Loss of Load (LL) and Over Production (OP) output values. The results provide quantitative information 

regarding the optimal storage system capacity in each configuration providing valuable insight in terms of 

sizing of the energy storage systems in the long-term.  

1 Introduction 

Increasing shares of Renewable Energy Sources “RES” 

worldwide have caused an increasing need to address 

the criticalities related to their variable and non-

dispatchable nature [1]. Energy Storage Systems “ESS” 

are required to decouple power generation and demand 

– which can be significantly shifted in time [2] – to allow 

the mass grid integration of RES which is required to 

achieve decarbonization and climate change mitigation 

targets [3]. Indeed, distributed electro-chemical ESS 

have experienced an exponential installed capacity 

growth in the last decade, reaching 1.6 GW worldwide 

in 2016, with a 9- to 38-fold increase foreseen in various 

2030 projection scenarios [4].  

Microgrid environments are a representative and 

economically feasible test bench to analyse at system 

level the balance between large RES shares and different 

ESS configurations at smaller scale in order to 

understand their impact on energy supply reliability and 

cost [5,6], resulting a crucial aspect for upscaled project 

development.  
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In particular, by applying a parametric variation 

approach, the optimal ESS capacity can be determined 

[7–16]. Each ESS configuration is evaluated according 

to a set of target output parameters for reliability, 

efficiency or cost which quantify the performance of a 

microgrid [7,11,13] according to the desired 

requirements or operational criteria and objectives of the 

energy supply.  

The main methodologies and tools used for hybrid 

storage sizing optimization in microgrid environments 

are comprehensively reported in Hosseinalizadeh et al. 

[16] and Abdin et al. [5]. However, most of the analysed 

studies either implement only one ESS [7–9], or are 

based on simple constant efficiency energy conversion 

(HOMER) which provides unrealistic operational 

results [10–13]. There are fewer examples of fully 

integrated, model-based studies for hybrid battery-

hydrogen ESS sizing optimization [13–16] although 

none addressing the parametric variation of the two ESS 

parameters over the full variability domain. Similar 

efforts have been reported by Bruni et al. [6] and Cau et 

al. [17], although the parametrical variation is reported 

only for one ESS at a time.  
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2 Materials and methods 

2.1 Huelva microgrid – configuration 

The storage evaluation is tailored for the case study of 

the hybrid renewable microgrid located in Huelva, 

which is illustrated in Figure 1. 

 
Fig. 1. Huelva hybrid renewable microgrid configuration. 

The hybrid AC/DC microgrid is located in Huelva, 

Spain, and represents a suitable test bench for energy 

management and optimization analyses, presenting 

several renewable energy systems at kW-scale and a 

hybrid battery-hydrogen ESS. The summary of the 

installed components can be found in Table 1. For the 

presented study, power is assessed to be exchanged on 

the DC bus, considering the losses of the electrical 

conversion systems accordingly.  

Table 1. Nominal parameters of the microgrid components  

Component  Supplier 

Model  

Nominal 

Parameters 

PV panels 

mono/poli/a-Si  

Isofoton® ISF-250 

Atersa® A-230P 

Schott® ASI 100 

3x 5 kWp 

Alkaline 

Electrolyzer 

Nitidor®  

Standard line 

2 Nm3
H2/h 

10 kWe 

Hydrogen 

storage tank 
Lapesa® 

1.044 m3, 30 

bar  

PEM fuel cell 

(PEMFC) 

Ballard®  

FCgen 1020ACS 
3x 3.44 kWe 

Wind Turbine 

(WT) 

Enair®  

E-30PRO 
3 kWnom 

Lead-acid 

battery bank 

U-Power® UP100-

12 

34x12 V 

100 Ah  

The nominal characteristics of the lead-acid battery and 

hydrogen tank are considered variable (base case in 

Table 1), while the technical parameters of all the other 

components are considered fixed to the base case values, 

in order to perform the parametrical variation of the 

ESS. 

2.2 Input data  

2.2.1 Meteorological data  

The meteorological input data is obtained from a 

Geographical Information System “PV-GIS” database 

[18] which provides TMY P-50 (Typical Meteorological 

Year with P50 uncertainty rate [19]) datasets in hourly 

resolution for given coordinates. In particular, Global 

Horizontal Irradiance “GHI”, ambient temperature Tamb 

and W10 (wind speed at 10 m height) data is extracted 

for the coordinates of Huelva, Spain (Figures 2-4). The 

GHI data is corrected according to the tilt angle of the 

installed solar panels via the geometrical relationships 

presented in [20], while the W10 data is corrected at the 

actual hub height of the WT (25 m), using a shear factor 

α equal to 0.3 for “small town with some trees and 

shrubs” terrains [21] (Figures 2-3). 

 
Fig. 2. Yearly global solar radiation (GHI and corrected) data  

 
Fig. 3. Yearly wind speed (W10 and corrected) data  

 
Fig. 4. Yearly ambient temperature (Tamb) data 

2.2.2 Load data & analysis 

The microgrid is simulated as connected to a real 

residential load whose data is obtained by the 

monitoring of a 100 m2 residential dwelling of a 12-

apartment building, located in Huelva, Spain [22] – Fig. 

5. The dwelling consists in a single-family house with 

an occupancy of 4-5 people with a preferential use 

during the morning and evening and during winter 

season. The contracted capacity is equal to 4.4 kW.  

The dwelling under study is divided into several 

monitored electrical circuits whose aggregate monthly 

energy consumption is represented in Fig. 6. The 

thermal demand of the dwelling is partly met by 

supporting electrical components (Air Conditioning 

“AC”, Heater, Domestic Hot Water “DHW” boiler). All 

the circuits are continuously monitored by voltage and 

current sensors which send the measured data every 5 s 

to the data acquisition system specifically developed by 

the University of Huelva [22].  
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Fig. 5. Monitored yearly load 2019 - total. 

  
Fig. 6. Aggregate monthly energy consumption by circuit. 

The load was resampled to an hourly resolution, in 

accordance with the modelling timestep (see Section 

2.3). The monthly average energy consumption of 466.7 

kWh/month and a specific energy consumption of 

around 55 kWh/m2 year, within the classification of 

MEB (Minimum Energy Building) [23], with a yearly 

cumulate equal to 5.66 MWh/year. The most energy-

consuming end circuits result to be the electric boiler for 

DHW with 34% of the total yearly demand, followed by 

the general appliances (each around 11-13%) and the 

electrical heater (12%).  

The temporal analysis of the monthly consumption 

shows a decreasing trend (Figure 6) during summer (up 

to -35% in August and September respect to the average) 

respect to the winter period (with the peak consumption 

in February with +25% respect to the average), mainly 

due to the electrical heating components (heater and 

DHW support boiler, accounting together for 46% of the 

yearly electricity consumption), which is not counter-

balanced by the cooling equipment in summer which is 

seldom used (AC, accounting for only 1% of the yearly 

electricity consumption) due to the advantageous 

subtropical climate [22]. The reduction in energy 

consumption in summer is also due to the reduced use 

of the dwelling by the inhabitants. The trend of the 

monthly consumptions of the general-purpose loads are 

rather stable throughout the year. 

2.3 Microgrid modelling 

The component modelling has been taken from 

Monforti Ferrario et al. [24] which present a full 

component model analysis based on custom MATLAB 

environment and validation for each component. The 

presented component modelling approach is a trade-off 

between accuracy and computational effort in order to 

focus on the system analysis from an energy standpoint 

by means of yearly simulations in hourly timestep. 

However, the component performance is always 

assessed at the specific operating conditions 

(considering dynamic part-load operation and internal 

process variables) by implementing correction models 

or analytical/empirical characteristic curves. The system 

modelling, developed in Simulink environment, 

calculates the power balance balance in hourly timestep 

between the generation and the demand (according to 

the hourly meteorological data and load data) and 

assigns net power setpoints to the ESS according to the 

implemented Power Management Strategy “PMS” logic 

[24–26]. The component models elaborate the provided 

setpoints, determining the new state of the components’ 

internal variables for each timestep and so on. On top, 

power threshold and ESS restoration via hysteresis loop 

control is implemented [24]. The simulations are run in 

Simulink, setting the standard solver (ode3) for discrete 

timestep (1 h). The initial values of the ESS must be 

initialized. 

2.3.1 Renewable Energy Generation models  

The PV output power has been simulated as a 2-

variable (radiation and panel temperature) correction 

model respect to Standard Testing Conditions “STC” as 

done by Camps et al. [27]. The radiation is elaborated 

considering the specific inclination of the panels, while 

the panel temperature is obtained from the ambient 

temperature via a global heat transfer coefficient k equal 

to 0.034 °Cm2/W  for “not so well cooled” PV array type 

[28]. Each PV panel array is characterised by its 

datasheet values of Voc (V), Isc (A), Vmp (V), Imp (A), Pn 

(W) and temperature correction coefficients α and β 

(%/°C) as well as DC efficiency factors as reported in 

Monforti Ferrario et al [24].  

The WT modelling is done by implementing the 

power curve provided by the manufacturer as a piece-

wise function in relation to the wind speed evaluated at 

hub height, as done by [29]. The output power is zero 

for wind speeds below cut-in speed (2 m/s) due to the 

mechanical inertia of the rotor, follows a cubic trend 

between cut-in wind speed (2 m/s) and nominal wind 

speed (12 m/s) from which is kept constant equal to the 

nominal power (3000 W) until cut-off wind speed (15 

m/s); for wind speeds beyond the cut-off wind speed (15 

m/s) the power is zero to preserve the rotor integrity. The 

global electrical, mechanical and aerodynamic DC 

efficiency factor is applied assumed constant and equal 

to 76% according to the manufacturer’s indication [24]. 

2.3.2 Energy Storage Systems models  

The electrolyser (10 kWe; 28 cells) has been modelled 

from the empirical I-V curves. The near-constant 

behaviour of the electrolyser voltage with current 

density justifies the first approximation of constant-

voltage operation to obtain the operating current, a new 

voltage value is successively obtained by spline 

interpolation from the empirical I-V curves which 
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determines a new value for the current and so on [24]. 

The polarization and power curves expressed in specific 

units are represented in Figure 7, respect to the 

experimental values. 

 
Fig.7. Electrolyser polarization (left) and power (right) curve. 

The specific results are in line with Ulleberg [30]. 

Typically, alkaline systems are usually operated at lower 

current density, in the range of 0.1-0.4 A/cm2 as shown 

by Carmo et al. [31] leading to power densities around 

0.2-0.8 W/cm2 in nominal conditions. 

Also the PEMFC (3.44 kWe; 80 cells) is modelled 

empirically, based on datasheet values for polarization 

and power curve reported by the manufacturer. The 

modelling exploits the fact that, since the PEMFC is 

operated in the ohmic region (without reaching the 

concentration loss knee [32]), the current can be 

extrapolated with a linear expression from the power 

with reasonable approximation. From the current, the 

calculation of the voltage can be done applying the 

empirical expression of the I-V curve (Fig. 8) provided 

by the manufacturer. 

 
Fig.8. Fuel cell polarization (left) and power (right) curve. 

The obtained I-V and I-P curves are in line with Fan et 

al. [32], and Carmo et al. [31].  

The produced/consumed hydrogen quantity is 

directly determined from the stack current by the 

Faraday law, calibrated in function of temperature and 

current density based on Ulleberg [30], and is set as 

input/output to the hydrogen tank. The tank modelling 

considers hydrogen as an ideal gas [24], leading to a 

linear variation of pressure respect to the mass 

input/output. Temperature effects are neglected due to 

the hourly timestep. 

The battery modelling is based on the dynamic 

battery model proposed by Tremblay [33], adapted by 

Valverde et. al [34] with decoupled relationships for 

charge & discharge voltage in function of current and 

State of Charge “SOC” for a single battery unit. The 

model was calibrated and validated  based on 

charge/discharge cycling data obtained from the 

installed batteries (SOC calculated by Coulomb 

counting and corrected for the Peukert effect) [24]. The 

voltage curves for a single battery unit are reported in 

Figure 9.  

 
Fig. 9. Battery charge/discharge curves. 

3 Energy storage scenarios 

The microgrid energy storage is simulated in three 

configurations: (i) battery-only, (ii) hydrogen-only and 

(iii) hybrid battery-hydrogen.  

The capacity of the hydrogen tank is varied by the 

geometrical volume (m3) of the tank while the battery 

capacity is varied by the battery nominal capacity (Ah) 

in order to maintain the voltage of the DC bus fixed to 

400 Vdc. In fact, the battery bank total voltage directly 

defines the DC bus voltage since the batteries are 

directly connected to the busbar (Fig. 1). 

Table 2. ESS characteristics variation envelope 

ESS 

variable  

Battery-

only 

H2-only Hybrid 

battery-H2 

Qbatt (Ah) 10-1000 0 10-1000 

Vtank (m3) 0 0.1-10 0.1-10 

The ESS capacity variation envelope has been selected 

in order to assess a comparable range of 0-350 kWh in 

terms of useful stored energy (considering the DC bus 

nominal voltage of 400 V, standard H2 density of 0.0898 

kg/Nm3 and LHVH2 equal to 33.33 kWh/kg), net of the 

return trip of the components at nominal conditions, 

assessed as 85% for the battery (round-trip), 75% for the 

electrolyser and 50% for the fuel cell [24]. 

The parametric variation of the ESS characteristics is 

evaluated by the Loss of Load (LL) and Over Production 

(OP) parameters and their percentages as defined in 

Equation 1 and 2.  

 

𝐿𝐿% =
𝐸𝑔𝑟𝑖𝑑,𝑖𝑛

𝐸𝑙𝑜𝑎𝑑
=

𝐿𝐿

𝐸𝑙𝑜𝑎𝑑
 (1) 

 

𝑂𝑃% =
𝐸𝑔𝑟𝑖𝑑,𝑜𝑢𝑡

𝐸𝑃𝑉 + 𝐸𝑊𝑇
=
𝐸𝑔𝑟𝑖𝑑,𝑜𝑢𝑡

𝐸𝑅𝐸𝑆
=

𝑂𝑃

𝐸𝑅𝐸𝑆
 (2) 

 

Where Ei is the cumulative yearly energy (kWh) –

integration of the instantaneous power in time – related 

to each analysed component. The LL parameter 

represents the sum of the load energy that the microgrid 

system is not able to supply and is supplied by the grid 

or shed in island mode. On the other hand, the OP 

parameter represents the amount of energy produced 

from the RES systems (PV and WT), which is not used 

in the system and is injected back into the grid, or wasted 

RES energy in island mode. Both parameters are of 
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paramount importance for the ESS sizing due to the 

effects of both the resource temporal availability and the 

time-shift of the load respect to the production [2].  

The general objective of the ESS is the operation of 

the microgrid in island mode, therefore minimizing LL 

and OP. Each energy storage scenario is assessed by 

running parallel simulations in each ESS configuration 

with parametric variation of one ESS parameter (Qbatt 

and Vtank) at a time within the range reported in Table 2, 

with a variation step of 10 Ah and 0.33 m3, respectively. 

4 Results and discussion  

Figure 10 shows the overall power and energy balance 

between the generation and the load. In Fig. 10-a, it can 

be observed that the PV production is predominant 

(producing between 50% to 95% of the monthly energy 

in winter and summer respectively) respect to the WT 

given the high radiation conditions in Southern Spain; 

resulting strongly oversized respect to the load. The 

overproduction during spring/summer (March to 

September) is 2-5 times the monthly energy demand. 

However, the typical daily resampling (0-24h) by month 

(Fig. 10-b) shows a significant time-shift between the 

load (especially in the morning and night-time) and the 

generation (predominantly PV in solar hours) as shown 

in Fig. 10-b, especially in winter periods (November-

March) due to electrical heating, requiring an ESS to 

manage the net power [2].  

 

 

Fig. 10. (a) Yearly energy balance (top) and (b) power 

balance (bottom) between generation and load (average daily 

resampling 0-24h by month). 

Figure 11 reports the trends of the output parameters LL 

and OP (and their percentages) with the increase of 

scale. The battery capacity increase results in a stronger 

reduction of the LL from around 2 MWh/year (LL% 

20%) at low capacity (<50 Ah) up to near-zero values at 

700 Ah (i.e. 250 kWh stored) [6]. Instead, the H2 storage 

capacity increase leads to a less steep reduction of the 

LL with an almost linear tendency at medium capacity 

ranges between 1-8 m3 (i.e. 50-275 kWh stored) after a 

sharp decrease at lower volumes (<1 m3). The minimum 

LL is around 0.17 MWh/year (LL% 3%). The changes of 

slope represent the points where specific deficit periods 

are absorbed (mostly in autumn/winter), sharply 

reducing the LL and LL%.  

 

Fig. 11. Performance parameters versus storage capacity. 

The different behaviour can be explained by the H2 

system presenting an increased “inertia” to 

store/discharge energy, the PEMFC at nominal 

operating conditions consumes approximately 3 times 

the hydrogen produced by the electrolyser in the same 

period, leading to an inconsistent management of the 

tank. Furthermore, the limited maximum pressure of the 

tank (30 bar) does not allow sufficient flexibility without 

quickly reaching saturation. On the other hand, the 

battery system can be operated at highly variable C-rates 

(up to 5C) and the net energy can be immediately stored 

or withdrawn [24]. 

For OP, the opposite happens: an increase in H2 capacity 

induces a more relevant decrease of the OP respect to an 

increase battery capacity. Both trends show a sharp drop 

in OP at low capacity (<25 kWh stored) then follow a 

linear trend. The slope of the H2-only configuration is 

steeper than the battery-only one due to the capacity of 

the H2 ESS to absorb larger amount of energy due to the 

lower round-trip efficiency. However, this is 

counterbalanced by increased losses [17].  

For the hybrid battery-H2 scenario the LL and LL%, (Fig. 

12), are slightly more affected by the increase of battery 

capacity rather than tank volume, however their 

variability range is limited in absolute value. With 

moderate ESS scales the LL% can be limited well below 

5%, reaching zero for the upper half of the analysed ESS 

variability envelope. 

 
Fig. 12. LL and LL% versus storage capacity (hybrid). 
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Instead the OP and OP% values (Figure 13) show higher 

overall values (between 8.8-10.2 MWh/year; 54-63%) 

and a more marked dependency on the H2 tank volume 

increase respect to the battery capacity for the reasons 

previously described. OP% is reduced from 63% for low 

ESS capacity to a minimum of 54% for the maximum 

tank capacity (10 m3) and half of the maximum battery 

capacity (500 Ah). A further reduction of OP is hard to 

obtain due to the summer overproduction unbalance 

shown in Fig. 10-a, which is very hard to absorb even 

by increasing both ESS to their maximum analysed 

capacities. 

 
Fig. 13. OP and OP% versus storage capacity (hybrid). 

This means that – according to the implemented 

technology – different driving parameters should be 

taken into account. For island operation without load 

shedding it is most suitable to size the H2 system at its 

maximum value (10 m3), while the battery should be 

sized exactly at the minimum value required to obtain 

zero LL (around 100 Ah), although greater capacities 

could be installed to reduce the OP. Different operation 

modes should be addressed more in detail by explicitly 

defining a priority scale between the parameters LL and 

OP which define the ESS sizing requirements 

accordingly (e.g. some curtailment of non-critical load 

could be allowable, taking advantage of ESS sizing 

reduction) which is object of future work. 

5 Conclusions 

Hybrid storage sizing should take carefully into account 

the actual requirements in terms of energy supply which 

significantly impact the components’ capacity. Three 

ESS configurations (battery, H2 and hybrid battery-H2) 

have been simulated and analysed in a range of 0-350 

kWh in a hybrid renewable microgrid environment 

operating under a real residential load. Results show that 

the LL is more affected by the load itself while the OP 

is more dependent on resource availability. LL is more 

sensible to the increase of battery capacity, with more 

suitable charge/discharge dynamics for load following, 

while OP is more sensible to an increase of H2 capacity, 

at the expense of storage round-trip efficiency. 

Therefore, in islanded mode, OP requirements define 

the H2 systems sizing, while the battery capacity is sized 

consequently in order to obtain zero LL. Different 

operation modes should foresee the definition of 

specific priority scales for LL, OP and other parameters, 

which lead to different ESS sizing criteria. 
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